K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

Ta có: AB < AC (gt)

Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

* Trường hợp Bnhọn (hình 83a)

Trong Δ ABC, ta có: AB < AC

Suy ra: ∠B > ∠C(đối diện với cạnh lớn hơn là góc lớn hơn)

Trong Δ AHB, ta có ∠(AHB) = 90o

Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)

Trong Δ AHC, ta có ∠(AHC) = 90o

Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)

Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC)

* Trường hợp Btù (hình 83b)

Vì điểm B nằm giữa H và C nên ∠(HAC) = ∠(HAB) + ∠(BAC)

Vậy ∠(HAB) < ∠(HAC).

10 tháng 6 2020

Ta có: AB < AC (gt)

Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

* Trường hợp góc B nhọn

Trong Δ ABC, ta có: AB < AC

Suy ra: góc B > góc C(đối diện với cạnh lớn hơn là góc lớn hơn)

Trong Δ AHB, ta có góc AHB = \(90^0\)

Suy ra: góc B + góc HAB = \(90^0\) (tính chất tam giác vuông) (1)

Trong Δ AHC, ta có góc AHC = \(90^0\)

Suy ra: góc C + góc HAC = \(90^0\) (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: góc B + góc HAB) = góc C + góc HAC

Mà góc B > góc C nên góc HAB < góc HAC

* Trường hợp Btù

Vì điểm B nằm giữa H và C nên góc HAC = góc HAB + góc BAC

Vậy góc HAB < góc HAC.

16 tháng 6 2018

Trong ΔABC ta có AC > AB (gt)

Suy ra: ∠B > ∠C (đối diện cạnh lớn hơn là góc lớn hơn)

Trong ΔAHB có ∠(AHB) = 90o

Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)

Trong ΔAHC có ∠(AHC) = 90o

Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)

Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC) .

26 tháng 3 2018

Em tham khảo bài tương tự tại đây nhé.

Câu hỏi của Lytranvietha 0_0 - Toán lớp 7 - Học toán với OnlineMath

a) Xét ΔABC có AB<AC(gt)

mà HB là hình chiếu của AB trên BC(gt)

và HC là hình chiếu của AC trên BC(gt)

nên HB<HC

c) tia AD nằm giữa hai tia AH và AM

a: Xét ΔABC có AB>AC

mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB>HC

b: ΔABC có AB>AC

nên góc C>góc B

=>90 độ-góc C<90 độ-góc B

=>góc HAC<góc HAB

24 tháng 3 2019

A B C H 1 2

Ta có: \(HB< HC\Rightarrow AB< AC\)(đường xiên ,hình chiếu)

Trong tam giác ABC có ; \(AB< AC\Rightarrow\widehat{C}< \widehat{B}\)(góc và cạnh đối diện trong tam giác )

\(\Rightarrow90^0-\widehat{C}>90^0-\widehat{B}\)   

Do \(AH\perp BC\Rightarrow\widehat{HAC}=90^0-\widehat{B};\widehat{HAC}=90^0-C\)

\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)

24 tháng 3 2019

A B C H E

Trên HC lấy điểm E sao cho HB=HE.

Suy ra E nằm giữa H và C vì HE<HC.

Xét tam giác ABE có AE đồng thời là đường cao,đường trung tuyến nên tam giác ABE cân tại A.

\(\Rightarrow AB=AE,\widehat{ABE}=\widehat{AEB}\)

Do ^AEH là góc ngoài của tam giác AEC nên \(\widehat{AEH}>\widehat{ACB}\)

Suy ra \(\widehat{ABE}>\widehat{ACB}\)hay \(AB< AC\)(quan hệ giữa góc và cạnh đối diện)

Đến đây mới áp dụng như bạn được nhé.Đề đã cho AB<AC đâu!

27 tháng 4 2020

ta có BAHˆ=AHCˆ=AHBˆ=90BAH^=AHC^=AHB^=90

BAHˆ=ACBˆBAH^=ACB^ ( cùng phụ HACˆHAC^)

HACˆ=ABCˆHAC^=ABC^( cùng phụ BAHˆBAH^)

27 tháng 4 2020

Giải: 

Có:  HB < HC 

Mà HB là hình chiếu của AB lên BC 

HC là hình chiếu của AC lên BC 

=> AB < AC ( mối quan hệ đường xiên và hình chiếu ) 

=> ^C  < ^B  => ^C - ^B < 0 (1)

Vì \(\Delta\)ABH vuông tại B => ^B + ^HAB = 90 độ 

\(\Delta\)ACH vuông tại C => ^C + ^HAC = 90 độ 

=> ^HAB + ^B = ^C + ^HAC 

=> ^HAB - ^HAC = ^C - ^B < 0  ( theo (1))

=> ^HAB < ^HAC.