Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AB < AC (gt)
Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)
* Trường hợp góc B nhọn
Trong Δ ABC, ta có: AB < AC
Suy ra: góc B > góc C(đối diện với cạnh lớn hơn là góc lớn hơn)
Trong Δ AHB, ta có góc AHB = \(90^0\)
Suy ra: góc B + góc HAB = \(90^0\) (tính chất tam giác vuông) (1)
Trong Δ AHC, ta có góc AHC = \(90^0\)
Suy ra: góc C + góc HAC = \(90^0\) (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: góc B + góc HAB) = góc C + góc HAC
Mà góc B > góc C nên góc HAB < góc HAC
* Trường hợp Btù
Vì điểm B nằm giữa H và C nên góc HAC = góc HAB + góc BAC
Vậy góc HAB < góc HAC.
Trong ΔABC ta có AC > AB (gt)
Suy ra: ∠B > ∠C (đối diện cạnh lớn hơn là góc lớn hơn)
Trong ΔAHB có ∠(AHB) = 90o
Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)
Trong ΔAHC có ∠(AHC) = 90o
Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)
Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC) .
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lytranvietha 0_0 - Toán lớp 7 - Học toán với OnlineMath
a) Xét ΔABC có AB<AC(gt)
mà HB là hình chiếu của AB trên BC(gt)
và HC là hình chiếu của AC trên BC(gt)
nên HB<HC
c) tia AD nằm giữa hai tia AH và AM
a: Xét ΔABC có AB>AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB>HC
b: ΔABC có AB>AC
nên góc C>góc B
=>90 độ-góc C<90 độ-góc B
=>góc HAC<góc HAB
Ta có: \(HB< HC\Rightarrow AB< AC\)(đường xiên ,hình chiếu)
Trong tam giác ABC có ; \(AB< AC\Rightarrow\widehat{C}< \widehat{B}\)(góc và cạnh đối diện trong tam giác )
\(\Rightarrow90^0-\widehat{C}>90^0-\widehat{B}\)
Do \(AH\perp BC\Rightarrow\widehat{HAC}=90^0-\widehat{B};\widehat{HAC}=90^0-C\)
\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)
Trên HC lấy điểm E sao cho HB=HE.
Suy ra E nằm giữa H và C vì HE<HC.
Xét tam giác ABE có AE đồng thời là đường cao,đường trung tuyến nên tam giác ABE cân tại A.
\(\Rightarrow AB=AE,\widehat{ABE}=\widehat{AEB}\)
Do ^AEH là góc ngoài của tam giác AEC nên \(\widehat{AEH}>\widehat{ACB}\)
Suy ra \(\widehat{ABE}>\widehat{ACB}\)hay \(AB< AC\)(quan hệ giữa góc và cạnh đối diện)
Đến đây mới áp dụng như bạn được nhé.Đề đã cho AB<AC đâu!
ta có BAHˆ=AHCˆ=AHBˆ=90BAH^=AHC^=AHB^=90
BAHˆ=ACBˆBAH^=ACB^ ( cùng phụ HACˆHAC^)
HACˆ=ABCˆHAC^=ABC^( cùng phụ BAHˆBAH^)
Giải:
Có: HB < HC
Mà HB là hình chiếu của AB lên BC
HC là hình chiếu của AC lên BC
=> AB < AC ( mối quan hệ đường xiên và hình chiếu )
=> ^C < ^B => ^C - ^B < 0 (1)
Vì \(\Delta\)ABH vuông tại B => ^B + ^HAB = 90 độ
\(\Delta\)ACH vuông tại C => ^C + ^HAC = 90 độ
=> ^HAB + ^B = ^C + ^HAC
=> ^HAB - ^HAC = ^C - ^B < 0 ( theo (1))
=> ^HAB < ^HAC.
Ta có: AB < AC (gt)
Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)
* Trường hợp Bnhọn (hình 83a)
Trong Δ ABC, ta có: AB < AC
Suy ra: ∠B > ∠C(đối diện với cạnh lớn hơn là góc lớn hơn)
Trong Δ AHB, ta có ∠(AHB) = 90o
Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)
Trong Δ AHC, ta có ∠(AHC) = 90o
Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)
Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC)
* Trường hợp Btù (hình 83b)
Vì điểm B nằm giữa H và C nên ∠(HAC) = ∠(HAB) + ∠(BAC)
Vậy ∠(HAB) < ∠(HAC).