Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé.
a. Vì AD là tia phân giác của \(\widehat{BAC}\) (gt)
nên \(\widehat{BAD}=\widehat{CAD}\)
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AD là cạnh chung
\(\widehat{BAD}=\widehat{CAD}\) (chứng minh trên)
AB = AC
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\) (đpcm)
b. Gọi giao điểm của MN và AD là S
Ta có: \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widehat{MAS}=\widehat{NAS}\)
Xét \(\Delta AMS\) và \(\Delta ANS\) có:
AS là cạnh chung
\(\widehat{MAS}=\widehat{NAS}\) (chứng minh trên)
AM = AN (gt)
\(\Rightarrow\Delta AMS=\Delta ANS\left(c.g.c\right)\)
\(\Rightarrow\widehat{ASN}=\widehat{ASM}\) (2 góc tương ứng)
Mà \(\widehat{ASN}+\widehat{ASM}=180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{ASN}=\widehat{ASM}=\dfrac{180^o}{2}=90^o\)
\(\Rightarrow AS\perp MN\)
hay \(AD\perp MN\) (đpcm)
c. Ta có: AM = AN (gt)
\(\Rightarrow\Delta AMN\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{MAN}}{2}\) (định lí)
hay \(\widehat{AMN}=\dfrac{180^o-\widehat{BAC}}{2}\) (1)
Lại có: AB = AC (gt)
\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\) (định lí) (2)
Từ (1), (2)
\(\Rightarrow\widehat{AMN}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị
\(\Rightarrow\) MN // BC (dấu hiệu nhận biết) (*)
Xét \(\Delta MOP\) và \(\Delta BDO\) có:
MO = BO (vì O là trung điểm của BM)
\(\widehat{MOP}=\widehat{BOD}\) (2 góc đối đỉnh)
OD = PO (gt)
\(\Rightarrow\Delta MOP=\Delta BOD\left(c.g.c\right)\)
\(\Rightarrow\widehat{MOP}=\widehat{BDO}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) MP // BC (dấu hiệu nhận biết) (**)
Từ (*), (**)
\(\Rightarrow\) Qua điểm M ở ngoài đường thẳng BC, ta vừa có MN // BC, MP // BC (trái với tiên đề Ơ-clit)
\(\Rightarrow\) 3 điểm P, M, N thẳng hàng (đpcm)
giúp mik nhanh câu c dc khum ạ
2 câu kia mik xong r
cảm ơn các bạn
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: AM=ED/2
AN=BC/2
mà ED=BC
nên AM=AN
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: ΔAMB=ΔAMC
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
c: góc BAM=góc CAM=40/2=20 độ
góc B=góc C=90-20=70 độ
d: Xét ΔAEM và ΔAFM có
AE=AF
góc EAM=góc FAM
AM chung
=>ΔAEM=ΔAFM
=>ME=MF
=>ΔMEF cân tại M