K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có
AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

b: ΔAMB=ΔAMC

=>góc MAB=góc MAC

=>AM là phân giác của góc BAC

ΔABC cân tại A có AM là trung tuyến

nên AM vuông góc BC

c: góc BAM=góc CAM=40/2=20 độ

góc B=góc C=90-20=70 độ

d: Xét ΔAEM và ΔAFM có

AE=AF

góc EAM=góc FAM

AM chung

=>ΔAEM=ΔAFM

=>ME=MF

=>ΔMEF cân tại M

6 tháng 6 2015

AM LÀ TRUNG TUYẾN =>  MB = MC = 6/2 = 3 cm

áp dụng định lí Pi-ta-go trong tam giác vuông, ta có:

AB2 = AM2 + BM2

=> AM2 = AB2 - BM2 = 52 - 32 = 25 - 9 = 16

=> AM = CĂN CỦA 16 = 4 cm

 

cm: ME = MF 

xét 2 tam giác vuông: EMB VÀ FMC, CÓ:

MB = MC

GÓC EBM = GÓC FMC  (TAM GIÁC ANC CÂN TẠI A)

=> tam giác EMB = TAM GIÁC FMC   (CẠNH HUYỀN - GÓC NHỌN)

=> ME = MF (2 CẠNH TƯƠNG ỨNG)                   (đpcm)

9 tháng 1 2021

Hình bạn tự vẽ nhé.

a. Vì AD là tia phân giác của \(\widehat{BAC}\) (gt)

nên \(\widehat{BAD}=\widehat{CAD}\)

Xét \(\Delta ABD\) và \(\Delta ACD\) có:

AD là cạnh chung

\(\widehat{BAD}=\widehat{CAD}\) (chứng minh trên)

AB = AC

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)   (đpcm)

b. Gọi giao điểm của MN và AD là S

Ta có: \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widehat{MAS}=\widehat{NAS}\)

Xét \(\Delta AMS\) và \(\Delta ANS\) có:

AS là cạnh chung

\(\widehat{MAS}=\widehat{NAS}\)  (chứng minh trên)

AM = AN (gt)

\(\Rightarrow\Delta AMS=\Delta ANS\left(c.g.c\right)\)

\(\Rightarrow\widehat{ASN}=\widehat{ASM}\) (2 góc tương ứng)

Mà \(\widehat{ASN}+\widehat{ASM}=180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{ASN}=\widehat{ASM}=\dfrac{180^o}{2}=90^o\)

\(\Rightarrow AS\perp MN\)

hay \(AD\perp MN\)   (đpcm)

c. Ta có: AM = AN (gt)

\(\Rightarrow\Delta AMN\) cân tại A (dấu hiệu nhận biết)

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{MAN}}{2}\)  (định lí)

hay \(\widehat{AMN}=\dfrac{180^o-\widehat{BAC}}{2}\)  (1)

Lại có: AB = AC (gt)

\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)

\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\) (định lí)  (2)

Từ (1), (2)

\(\Rightarrow\widehat{AMN}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

\(\Rightarrow\) MN // BC (dấu hiệu nhận biết)  (*)

Xét \(\Delta MOP\) và \(\Delta BDO\) có:

MO = BO (vì O là trung điểm của BM)

\(\widehat{MOP}=\widehat{BOD}\) (2 góc đối đỉnh)

OD = PO (gt)

\(\Rightarrow\Delta MOP=\Delta BOD\left(c.g.c\right)\)

\(\Rightarrow\widehat{MOP}=\widehat{BDO}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\) MP // BC (dấu hiệu nhận biết)  (**)

Từ (*), (**)

\(\Rightarrow\) Qua điểm M ở ngoài đường thẳng BC, ta vừa có MN // BC, MP // BC  (trái với tiên đề Ơ-clit)

\(\Rightarrow\) 3 điểm P, M, N thẳng hàng   (đpcm)

9 tháng 1 2021

hey .you vẽ hộ mk cái hình vs ạ

21 tháng 6 2021

giúp mik nhanh câu c dc khum ạ

2 câu kia mik xong r

cảm ơn các bạn

10 tháng 12 2021

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có 

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: AM=ED/2

AN=BC/2

mà ED=BC

nên AM=AN

\(BM=\dfrac{1}{2}BC\)

\(GE=\dfrac{1}{2}AB\)

DF=AC