Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)
ta có AD = AB - BD = 6 - 4 =2 cm ; \(\dfrac{AD}{AB}=\dfrac{2}{6}=\dfrac{1}{3}\)
a,\(\Delta ABC\) có
\(\dfrac{BD}{AB}=\dfrac{4}{6}=\dfrac{2}{3}\) ; \(\dfrac{CE}{AC}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{CE}{AC}\)
=> DE // BC
\(\Delta ABC\) có DE // BC
\(\Rightarrow\Delta ADE\sim\Delta ABC\) theo \(k=\dfrac{1}{3}\) (1 )
b, \(\Delta ABCcó\) EK // AB
\(\Rightarrow\Delta EKC\sim\Delta ABC\) (2)
từ (1) (2 ) => đpcm
c, EK // AB theo hệ quả định lí ta lét trong \(\Delta ABC\) có
\(\dfrac{EK}{AB}=\dfrac{CE}{AC}hay\dfrac{EK}{6}=\dfrac{6}{9}\Rightarrow EK=4\)
EK // AB theo định lí ta lét trong \(\Delta ABC\) có
\(\dfrac{KC}{BC}=\dfrac{EC}{AC}hay\dfrac{KC}{12}=\dfrac{6}{9}\Rightarrow KC=8\)
\(C_{EKC}=EC+EK+KC=6+4+8=18cm\)
Bài 1:Xét \(\Delta\)ABC có M,N lần lượt là trung điểm của B,C => MN song song với BC(t/c đường trung bình)
MN=\(\frac{1}{2}\)BC=6(cm)
có phải đường trung bình đâu bạn , nó có là trung điểm đâu
4 với 6 và 6 với 9 mà
a: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
Do đo:ΔADE đồng dạng với ΔABC
b: Xét ΔADE và ΔEKC có
góc ADE=góc EKC(=góc B)
góc AED=góc ECK
Do đo: ΔADE đồng dạng với ΔEKC