K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

Theo định lí sin trong tam giác ta có:

a sin A = 2 R ⇒ a = 2 R ​ . sin A

Tương tự,  b = 2 R . sin B ;    c = 2 R . sin C

Ta có:  a b   =   c 2   n ê n   2 R . sin A   .   2 R .   sin   B   =   ( 2 R sin   C ) 2

Hay  sin   A .   sin   B =   ( sin C ) 2

ĐÁP ÁN A

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\) (Loại)

Vì: Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

Không đủ dữ kiện để suy ra \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\)

B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\) (Loại)

Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \nRightarrow \frac{b}{{\sin A}} = \frac{a}{{\sin B}}\)

C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\)(sai vì theo câu a, \(\sin B = \frac{{\sqrt 2 }}{2}\))

D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}.\)

Theo định lý cos ta có:

\({b^2} = {c^2} + {a^2} - 2ca.\cos B\) (*)

Mà \(\widehat B = {135^o} \Rightarrow \cos B = \cos {135^o}\).

Thay vào (*) ta được: \({b^2} = {c^2} + {a^2} - 2ca\;\cos {135^o}\)

=> D đúng.

Chọn D

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. \(\sin A = \sin \,(B + C)\)

Ta có: \((\widehat A  + \widehat C) + \widehat B= {180^o}\)

\(\Rightarrow \sin \,(B + C) = \sin A\)

=> A đúng.

B. \(\cos A = \cos \,(B + C)\)

Sai vì \(\cos \,(B + C) =  - \cos A\)

C. \(\;\cos A > 0\) Không đủ dữ kiện để kết luận.

Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)

Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)

D. \(\sin A\,\, \le 0\)

Ta có \(S = \frac{1}{2}bc.\sin A > 0\). Mà \(b,c > 0\)

\( \Rightarrow \sin A > 0\)

=> D sai.

Chọn A

12 tháng 12 2017

a)Chương 2: TICH VÔ HƯỚNG CỦA HAI VEC TƠ VÀ ỨNG DỤNG

8 tháng 2 2022

A

28 tháng 9 2023

Theo đl sin có:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow b=a\dfrac{sinB}{sinA};c=\dfrac{sinC}{sinA}.a\)

Mà `b+c=2a`

\(\Rightarrow a\dfrac{sinB}{sinA}+a\dfrac{sinC}{sinA}=2a\\ \Rightarrow\dfrac{sinB}{sinA}+\dfrac{sinC}{sinA}=2\\ \Leftrightarrow sinB+sinC=2sinA\)

Chọn B

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Diện tích S của tam giác ABC là: \(S = \frac{1}{2}a.{h_a}\)

b) Xét tam giác vuông AHC ta có:  \(\sin C = \frac{{AH}}{{AC}} = \frac{{{h_a}}}{b}\)

\( \Rightarrow {h_a} = b.\sin C\)

c) Thay \({h_a} = b.\sin C\) vào công thức diện tích, ta được: \(S = \frac{1}{2}ab\sin C\)

d) Theo định lí sin ta có: \(\frac{c}{{\sin C}} = 2R \Rightarrow \sin C = \frac{c}{{2R}}\)

Thay vào công thức ở c) ta được: \(S = \frac{1}{2}ab\frac{c}{{2R}} = \frac{{abc}}{{4R}}.\)