Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sinA/2.cos^3(B/2)=sinB/2.cos^3(A/2)
sinA/2.cos(B/2)[ 1 - sin^2B/2]=sinB/2.cos(A/2)[1 -sin^2A/2]
sinA/2.cosB/2 - sinB/2.cosA/2 = 1/2sinA/2.sinB/2[ sinB - sinA]
sin(A-B)/2 = sinA/2.sinB/2 cos(A+B)/2.sin(A-B)/2
sin(A-B)/2[ 1 - sinA/2.sinB/2 cos(A+B)/2] = 0
Vì [1 - sinA/2.sinB/2 cos(A+B)/2] >0
=> sin(A-B)/2 =0
=> A = B
Ta có : A+B+C= 180
=>sin(A+B)/2 = sin(180/2 - C/2) = cosC/2
ttcó: sinC/2 = cos(A+B)/2
=> sA+sB+sC =2cosC/2*cos(A-B)/2 + 2cos(A+B)/2*cosC/2
=2cosC/2
=4cosA/2cosB/2cosC/2
a) \(\dfrac{\sin2\text{a}+\cos a}{1+\cos2\text{a}+\cos a}=2\tan a\)
a) \(\dfrac{sin2\alpha+sin\alpha}{1+cos2\alpha+cos\alpha}=\dfrac{2sin\alpha cos\alpha+sin\alpha}{2cos^2\alpha+cos\alpha}\)\(=\dfrac{sin\alpha\left(2cos\alpha+1\right)}{cos\alpha\left(2cos\alpha+1\right)}=\dfrac{sin\alpha}{cos\alpha}=tan\alpha\).
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
rút gọn biểu thức:
E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))