Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai tam giác AHC và BAC có:
Nhưng hai tam giác này không bằng nhau vì góc AHC không phải là góc kề với cạnh AC
Vì AH ko bằng cạnh AB và HC ko bằng cạnh BC nên ta ko thể kết luận tam giác AHC = tam giác BAC theo trường hợp cạnh - cạnh - cạnh
Xét hai tam giác ΔAHC và ΔBAC có:
-AC chung
-Góc BAC = góc AHC
=>Ko đủ dữ kiện để kết luận hai tam giác trên bằng nhau
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: \(\widehat{BAC}=70^0\)
nên \(\widehat{BAH}=35^0\)
=>\(\widehat{B}=55^0\)
=>BH<AH
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: AD=AE
hay ΔADE cân tại A
Góc ABC không phải là góc xen giữa hai cạnh BC và CA góc A'BC không phải là góc xen giữa hai cạnh BC và CA'. Do đó không thể sử dụng trường hợp cạnh - góc - cạnh để kết luận hai tam giác bằng nhau.
Xét \(\Delta\)\(\Delta\)\(\Delta AHC\Delta\)tam giác AHC và BAC có:
AC là cạnh chung
\(\widehat{ }AHC\)AHC=BAC= 90*
C là góc chung
Nhưng 2 tam giác này k = nhau
Do AHC k kề với AC