K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\overrightarrow{AP}+\overrightarrow{AM}\)

\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

\(=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

vecto AN+vecto BP+vecto CM

=vecto AB+vecto BN+vecto BC+vecto CP+vecto CA+vecto AM

=vecto AB+1/3vecto BC+vecto BC+1/3vecto CA+vecto CA+1/3vecto AB

=4/3 vecto AB+4/3vecto BC+4/3vecto CA

=vecto 0

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

19 tháng 8 2018

\(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

\(\overrightarrow{BH}=x\overrightarrow{BC}\rightarrow\overrightarrow{BA}+\overrightarrow{AH}=x\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\rightarrow\overrightarrow{AH}=x\overrightarrow{AC}+\left(1-x\right)\overrightarrow{AB}\)

Để A,I,H thẳng hàng thì

\(\overrightarrow{AI}=k.\overrightarrow{AH}\)

\(\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=k\left(1-x\right)\overrightarrow{AB}+kx\overrightarrow{AC}\)

Hay \(\left\{{}\begin{matrix}\dfrac{1}{3}=k\left(1-x\right)\\\dfrac{1}{3}=kx\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k=\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

vậy x=1/2 thì thoả mãn

28 tháng 1 2019

Ta có:

\(AC^2=AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{1}{4}BC^2\\ \Rightarrow BC^2=\left(\dfrac{AB^2+AC^2}{2}-AC^2\right).4=2\left(AB^2-AC^2\right)\)

Gọi M là trung điểm củaBC

\(\overrightarrow{AG}=\dfrac{2}{3}\cdot\overrightarrow{AM}=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Lời giải:

Vì $AM$ là trung tuyến của tam giác $ABC$ nên $M$ là trung điểm của $BC$

\(\Rightarrow \overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}\) (2 vecto đối nhau)

Ta có:

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\); \(\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}\)

\(\Rightarrow 2\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AB}+\overrightarrow{AC}\)

Hoàn toàn tương tự:

\(2\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{BC}; 2\overrightarrow{CP}=\overrightarrow{CA}+\overrightarrow{CP}\)

Cộng theo vế các đẳng thức trên:

\(\Rightarrow 2(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP})=(\overrightarrow{AB}+\overrightarrow{BA})+(\overrightarrow{AC}+\overrightarrow{CA})+(\overrightarrow{BC}+\overrightarrow{CB})\)

\(=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\)

\(\Rightarrow \overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\) (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Hình vẽ:

Chương I: VÉC TƠ