Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vecto AN+vecto BP+vecto CM
=vecto AB+vecto BN+vecto BC+vecto CP+vecto CA+vecto AM
=vecto AB+1/3vecto BC+vecto BC+1/3vecto CA+vecto CA+1/3vecto AB
=4/3 vecto AB+4/3vecto BC+4/3vecto CA
=vecto 0
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)
\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)
\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
\(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{BH}=x\overrightarrow{BC}\rightarrow\overrightarrow{BA}+\overrightarrow{AH}=x\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\rightarrow\overrightarrow{AH}=x\overrightarrow{AC}+\left(1-x\right)\overrightarrow{AB}\)
Để A,I,H thẳng hàng thì
\(\overrightarrow{AI}=k.\overrightarrow{AH}\)
\(\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=k\left(1-x\right)\overrightarrow{AB}+kx\overrightarrow{AC}\)
Hay \(\left\{{}\begin{matrix}\dfrac{1}{3}=k\left(1-x\right)\\\dfrac{1}{3}=kx\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}k=\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)
vậy x=1/2 thì thoả mãn
Ta có:
\(AC^2=AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{1}{4}BC^2\\ \Rightarrow BC^2=\left(\dfrac{AB^2+AC^2}{2}-AC^2\right).4=2\left(AB^2-AC^2\right)\)
Gọi M là trung điểm củaBC
\(\overrightarrow{AG}=\dfrac{2}{3}\cdot\overrightarrow{AM}=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
Lời giải:
Vì $AM$ là trung tuyến của tam giác $ABC$ nên $M$ là trung điểm của $BC$
\(\Rightarrow \overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}\) (2 vecto đối nhau)
Ta có:
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\); \(\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}\)
\(\Rightarrow 2\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AB}+\overrightarrow{AC}\)
Hoàn toàn tương tự:
\(2\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{BC}; 2\overrightarrow{CP}=\overrightarrow{CA}+\overrightarrow{CP}\)
Cộng theo vế các đẳng thức trên:
\(\Rightarrow 2(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP})=(\overrightarrow{AB}+\overrightarrow{BA})+(\overrightarrow{AC}+\overrightarrow{CA})+(\overrightarrow{BC}+\overrightarrow{CB})\)
\(=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\)
\(\Rightarrow \overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\) (đpcm)
\(\overrightarrow{AP}+\overrightarrow{AM}\)
\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)