Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình
2AM=AB+AC (10
2BN=BC+BA (2)
2CP= CA+CB (3)
TỪ 1,2,3 suy ra 2AM+2BN+2CP=0
suy ra AM+BN+CP=0 (ĐPCM)
a) Vì M, N, P lần lượt là trung điểm của BC, CA, AB
Nên AM, BN, CP lần lượt là đường trung tuyến của BC, CA, AB.
\(\Rightarrow\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
Lời giải:
a)
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{BC}+\overrightarrow{CN}+\overrightarrow{CA}+\overrightarrow{AP}\)
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{AC}+\overrightarrow{CM}+\overrightarrow{BA}+\overrightarrow{AN}+\overrightarrow{CB}+\overrightarrow{BP}\)
\(\Rightarrow 2(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP})=(\overrightarrow{AB}+\overrightarrow{BA})+(\overrightarrow{BM}+\overrightarrow{CM})+(\overrightarrow{BC}+\overrightarrow{CB})+(\overrightarrow{CA}+\overrightarrow{AC})+(\overrightarrow{AP}+\overrightarrow{BP})+(\overrightarrow{CN}+\overrightarrow{AN})\)
\(=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\) (do các cặp tổng đều là vecto đối nhau)
\(\Rightarrow \overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=0\)
(đpcm)
b) Theo phần a:
\(\overrightarrow{AM}=-(\overrightarrow{BN}+\overrightarrow{CP})=-\overrightarrow{BN}+(-\overrightarrow{CP})\)
\(=\overrightarrow{NB}+\overrightarrow{PC}\) (đpcm)
a: \(\overrightarrow{AM}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}=\dfrac{1}{2}\overrightarrow{AC}\)
b: \(=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}\)
\(=\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}\)
c: \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}\)
\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}\)
\(=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)=\overrightarrow{0}\)
a/ \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)+\frac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{BA}\right)+\frac{1}{2}\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\)
\(=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\frac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)
b/
Do MN là đường trung bình tam giác ABC \(\Rightarrow\overrightarrow{MN}=\frac{1}{2}\overrightarrow{AC}\)
\(\overrightarrow{AN}=\overrightarrow{AM}+\overrightarrow{MN}=\overrightarrow{AM}+\frac{1}{2}\overrightarrow{AC}=\overrightarrow{AM}+\overrightarrow{AP}\)
c/
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}+\frac{1}{2}\overrightarrow{CA}=\frac{1}{2}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{CA}=\overrightarrow{0}\)
ta có : 2vecto AM =vecto AB +vectoAC
2 vecto BN = vectoBA +vectoBC
2 vecto CP =vecto CA + vectoCB
=> 2vecto AM +2 vecto BN + 2 vecto CP =vecto AB +vecto AC +vecto BA +vecto BC +vecto CA + vecto CB =vecto 0
=> vecto AM + vecto BN + vecto CP =vecto 0
MÌNH LÀM VẬY CŨNG KO BIẾT ĐÚNG KO NỮA
Lời giải:
Vì $AM$ là trung tuyến của tam giác $ABC$ nên $M$ là trung điểm của $BC$
\(\Rightarrow \overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}\) (2 vecto đối nhau)
Ta có:
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\); \(\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}\)
\(\Rightarrow 2\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AB}+\overrightarrow{AC}\)
Hoàn toàn tương tự:
\(2\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{BC}; 2\overrightarrow{CP}=\overrightarrow{CA}+\overrightarrow{CP}\)
Cộng theo vế các đẳng thức trên:
\(\Rightarrow 2(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP})=(\overrightarrow{AB}+\overrightarrow{BA})+(\overrightarrow{AC}+\overrightarrow{CA})+(\overrightarrow{BC}+\overrightarrow{CB})\)
\(=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\)
\(\Rightarrow \overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\) (đpcm)
Hình vẽ: