K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

 

a: Xét tứ giác DHEC có

góc HDC+góc HEC=180 độ

nên DHEC là tứ giác nội tiếp

b: Xét tứ giác ABDE có

góc AEB=góc ADB=90 độ

Do đo; ABDE là tứ giác nội tiếp

13 tháng 3 2020

Đáp án:

Giải thích các bước giải:

1. Xét tứ giác CEHD có :

CEH = 90 ( BE là đường cao )

CDH = 90 ( AD là đường cao )

⇒ CEH + CDH = 90 + 90 = 180

Mà CEH và CDH là hai góc đối của tứ giác CEHD

⇒ CEHD là tứ giác nội tiếp (đpcm)

2. BE là đường cao ( gt )

⇒ BE ⊥ AB ⇒ BFC = 90

Như vậy E và F cùng nhìn BC dưới một góc 90 ⇒ E và F cùng nằm trên (O) đường kính AB

⇒ 4 điểm B, C, E, F cùng nằm trên một đường tròn (đpcm)

3. Xét ΔAEH và ΔADC có :

AEH = ADC (=90)

A chung

⇒ ΔAEH ~ ΔADC

⇒ AE/AD = AH/AC

⇒ AE.AC = AH.AD

Xét ΔBEC và ΔADC có :

BEC = ADC (=90)

C chung

⇒ ΔBEC ~ ΔADC

⇒ AE/AD = BC/AC

⇒ AD.BC = BE.AC (đpcm)

4. Có : C1 = A1 (cùng phụ góc ABC)

C2 = A1 ( hai góc nối tiếp chắn cung BM )

⇒ C1 = C2 ⇒ CB là tia phân giác HCM

Lại có : CB ⊥ HM

⇒ Δ CHM cân tại C

⇒ CB là đường trung trực của HM

⇒ H và M đối xứng nhau qua BC (đpcm)

5. Có : Bốn điểm B,C,E,F cùng nằm trên một đường tròn ( câu 2 )

⇒ C1 = E1 (hai góc nội tiếp cùng chắn BF) (*)

Có : Tứ giác CEHD nội tiếp (câu 1)

⇒ C1 = E2 (hai góc nội tiếp cùng chắn cung HD ) (**)

Từ (*) và (**) ta suy ra :

E1 = E2

⇒ EB là tia phân giác DEF

Cm tương tự ta được : FC là tia phân giác của DFE

Mà BE và CF cắt nhau tại H

⇒ H là tâm của đường tròn nội tiếp ΔDEF

12 tháng 11 2021

 

  
29 tháng 1 2021

a) Ta có  AD là đường cao của △ABC (gt) 

=> AD⊥BC => \(\widehat{CDA} = 90^o\)

Tương tự ta có \(\widehat{CEB}=90^o \)

Tứ giác CEHD có : \(\widehat{CDA} + \widehat{CEB} = 90^o + 90^o = 180^o \) => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn 

b) △AEH và △ADC , có  

\(\begin{cases} \widehat{AEH}=\widehat{ADC}=90^o\\ \widehat{CAD} ( góc chung ) \end{cases} \)=> △AEH đồng dạng với △ADC ( g.g) 

=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC} \) ( tỉ số đồng dạng ) => AE.AC = AH.AD (1)

Ta có \(\widehat{AFC} = 90^o \) ( góc nội tiếp chắn nửa đường tròn ) 

△AFC vuông tại F , có FE là đường cao ( BF ⊥ AC tại E ) => \(AF^2\) = AE.AC ( hệ thức lượng ) (2) 

Từ (1) và (2) => \(AF^2= AH.AD\)

20 tháng 12 2017

Câu hỏi của hungbck5 - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

13 tháng 3 2016

a)HEC+HDC=180 => .......

b)BFC=BEC=90 =>tứ giác FEAC noi tiep => .....

13 tháng 3 2016

c)

  1.  AE*AC=AH*AD thì cm tam giác AEB dong dang tam giác AFC
  2. 2*S abc = AD*BC=BE*AC
25 tháng 2 2022

a, Xét tứ giác BCEF có 

^CEB = ^CFB = 900

mà 2 góc này kề, cùng nhìn cạnh BC 

Vậy tứ giác BCEF là tứ giác nt 1 đường tròn 

b, Xét tứ giác AEHF có 

^HEA = ^HFA = 900

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

c, Ta có ^AMN = ^ACN ( góc nt chắn cung AN ) 

^ANM = ^MBA ( góc nt chắn cung MA ) 

mà ^ACN = ^MBA ( tứ giác BCEF nt và 2 góc cùng nhìn cung CF ) 

=> ^AMN = ^ANM Vậy tam giác AMN cân tại A

=> AN = AM 

d, Ta có : ^CBM = ^CFE ( góc nt chắn cung CE của tứ giác BCEF ) 

mặt khác : ^CNM = ^CBM ( góc nt chắn cung CM ) 

=> ^CFE = ^CNM, mà 2 góc này ở vị trí đồng vị ) 

=> MN // EF 

e, Ta có AO là đường cao tam giác MAN 

mà MN // EF ; AO vuông MN => AO vuông EF 

25 tháng 2 2022

4 năm nửa em mới TL dc