\(AB=c,AC=b,BC=a\)

Chứng minh:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Kẻ \(BE\perp AC(E\in AC)\)

Khi đó \(\sin A=\frac{BE}{c}\Rightarrow \frac{a}{\sin A}=\frac{ac}{BE}\)

Mặt khác, \(S_{ABC}=\frac{BE.b}{2}\Rightarrow BE=\frac{2S_{ABC}}{b}\)

\(\Rightarrow \frac{a}{\sin A}=\frac{abc}{2S_{ABC}}\). Hoàn toàn tương tự với \(\frac{b}{\sin B},\frac{c}{\sin C}\) ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{abc}{2S_{ABC}}\) (đpcm)

11 tháng 8 2017

Gọi O là đường tròn ngoại tiếp tam giác ABC, D là trung điểm của BC, ta có:

\(OD\perp BC\)

\(OB=R;BD=\dfrac{1}{2}a\)

\(\widehat{BOD}=\widehat{A}\) (A là góc nội tiếp chắn cung BC, Ở là góc tâm chắn \(\dfrac{1}{2}\) cung BC)

Trong tam giác vuông DOB ta có:

\(sin\left(DOB\right)=\dfrac{BD}{OB}\)

\(\Rightarrow sinA=\dfrac{1}{2}\cdot\dfrac{a}{R}\Rightarrow\dfrac{a}{sinA}=2R\)

Chứng minh tương tự ta có:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)

4 tháng 8 2017

Bài 1:

Áp dụng định lí pytago trong tam giác vuông ABC ta có:

BC2=AC2+AB2

BC2=42+32

BC=\(\sqrt{25}\)=5(cm)

Ta có:

Sin B=\(\dfrac{AC}{BC}=\dfrac{4}{5}=0.8\)

Cos B=\(\dfrac{AB}{BC}=\dfrac{3}{5}=0.6\)

Tag B=\(\dfrac{AC}{AB}=\dfrac{4}{3}\)

Cotg B=\(\dfrac{AB}{AC}=\dfrac{3}{4}=0.75\)

22 tháng 9 2017

bài 2:

\(\sin\alpha^2+\cos\alpha^2=1\)

=>0,62+\(\cos\alpha^2=1\)

=>\(\cos\alpha=0,8\)

\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=>\tan\alpha=\dfrac{0,6}{0,8}=0,75\)

\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{0,8}{0,6}\)\(\approx1,33\)

23 tháng 7 2017

A B C c H b a h

kẻ AH vuông góc với BC 

đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :

sin B = \(\frac{AH}{AB}\),   sin C = \(\frac{AH}{AC}\)

do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)

suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)

tương tự   \(\frac{a}{sinA}=\frac{b}{sinB}\)

vậy suy ra dpcm

23 tháng 7 2017

cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá

24 tháng 7 2018

1)

Kẻ phân giác AD,BK vuông góc với AD
sin A/2=sinBAD
xét tam giác AKB vuông tại K,có:
sinBAD=BK/AB (1)
xét tam giác BKD vuông tại K,có
BK<=BD thay vào (1):
sinBAD<=BD/AB(2)
lại có:BD/CD=AB/AC
=>BD/(BD+CD)=AB/(AB+AC)
=>BD/BC=AB/(AB+AC)
=>BD=(AB*BC)/(AB+AC) thay vào (2)
sinBAD<=[(AB*BC)/(AB+AC)]/AB
= BC/(AB + AC)
=>ĐPCM

20 tháng 10 2018

A B C D H K a, Vẽ phân giác AD của góc BAC

Kẻ BH\(\perp\)AD tại H ; CK\(\perp AD\) tại K

Dễ thấy \(sin\widehat{A_1}=sin\widehat{A_2}=sin\dfrac{A}{2}=\dfrac{BH}{AB}=\dfrac{CK}{AC}=\dfrac{BH+CK}{AB+AC}\le\)\(\le\dfrac{BD+CD}{b+c}=\dfrac{a}{b+c}\)

b, Tượng tự \(sin\dfrac{B}{2}\le\dfrac{b}{a+c};sin\dfrac{C}{2}\le\dfrac{c}{a+b}\)

Mặt khác \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)

\(\Rightarrow sin\dfrac{A}{2}.sin\dfrac{B}{2}.sin\dfrac{C}{2}\le\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{1}{8}\)

9 tháng 8 2018

A B C H

ta có : \(\left\{{}\begin{matrix}AH=b.sinC\\AH=c.sinB\end{matrix}\right.\) \(\Rightarrow b.sinC=c.sinB\Leftrightarrow\dfrac{b}{sinB}=\dfrac{c}{sinC}\)

chứng minh tương tự với các đường cao kẻ từ \(B;C\)

\(\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\left(đpcm\right)\)

7 tháng 1 2018

....

9 tháng 6 2018

a, ( Định lý Sin)

b, Áp dụng T/C tỉ lệ thức

Xảy ra \(\Leftrightarrow a=b+c\)