Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Kẻ phân giác AD,BK vuông góc với AD
sin A/2=sinBAD
xét tam giác AKB vuông tại K,có:
sinBAD=BK/AB (1)
xét tam giác BKD vuông tại K,có
BK<=BD thay vào (1):
sinBAD<=BD/AB(2)
lại có:BD/CD=AB/AC
=>BD/(BD+CD)=AB/(AB+AC)
=>BD/BC=AB/(AB+AC)
=>BD=(AB*BC)/(AB+AC) thay vào (2)
sinBAD<=[(AB*BC)/(AB+AC)]/AB
= BC/(AB + AC)
=>ĐPCM
A B C D H K a, Vẽ phân giác AD của góc BAC
Kẻ BH\(\perp\)AD tại H ; CK\(\perp AD\) tại K
Dễ thấy \(sin\widehat{A_1}=sin\widehat{A_2}=sin\dfrac{A}{2}=\dfrac{BH}{AB}=\dfrac{CK}{AC}=\dfrac{BH+CK}{AB+AC}\le\)\(\le\dfrac{BD+CD}{b+c}=\dfrac{a}{b+c}\)
b, Tượng tự \(sin\dfrac{B}{2}\le\dfrac{b}{a+c};sin\dfrac{C}{2}\le\dfrac{c}{a+b}\)
Mặt khác \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)
\(\Rightarrow sin\dfrac{A}{2}.sin\dfrac{B}{2}.sin\dfrac{C}{2}\le\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{1}{8}\)
3)kẻ BD vuông góc voi71 BC, D thuộc AC
tam giác ABC cân tại A có AH là Đường cao
suy ra AH là trung tuyến
Suy ra BH=HC
(BD vuông góc BC
AH vuông góc BC
suy ra BD song song AH
suy ra BD/AH = BC/CH = 2
suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2
tam giác BDC vuông tại B có BK là đường cao
suy ra 1/BK^2 =1/BD^2 +1/BC^2
suy ra 1/BK^2 =1/4AH^2 +1/BC^2
1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).
Lời giải:
Theo hệ thức lượng trong tam giác:\(\sin ^2a=\frac{1-\cos 2a}{2}\)
Áp dụng vào bài toán và sử dụng định lý hàm cos:
\(\sin ^2\frac{A}{2}=\frac{1-\cos A}{2}=\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}=\frac{a^2-(b-c)^2}{4bc}\)
Ta cần CM \(\frac{a^2-(b-c)^2}{4bc}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow (ab+ac)^2-(b^2-c^2)^2\leq 4a^2bc\)
\(\Leftrightarrow a^2b^2+a^2c^2\leq 2a^2bc+(b^2-c^2)^2\)
\(\Leftrightarrow (b^2-c^2)^2-a^2(b-c)^2\geq 0\Leftrightarrow (b-c)^2[(b+c)^2-a^2]\geq 0\)
BĐT luôn đúng do với \(a,b,c\) là độ dài ba cạnh tam giác thì \(b+c>a\leftrightarrow (b+c)^2>a^2\)
Vậy \(\sin ^2\frac{A}{2}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow \sin \frac{A}{2}\leq \frac{a}{b+c}\) (đpcm)
Tương tự : \(\sin \frac{B}{2}\leq \frac{b}{a+c},\sin \frac{C}{2}\leq \frac{c}{a+b}\)
\(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{abc}{(a+b)(b+c)(c+a)}\)
Theo BĐT AM-GM: \((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\Rightarrow \frac{abc}{(a+b)(b+c)(c+a)}\leq \frac{1}{8}\)
\(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{1}{8}\) (đpcm)
a: \(BD\cdot CE\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot\dfrac{AB\cdot AC}{AH}\)
\(=\dfrac{AH^4}{AH}=AH^3\)
b: \(\dfrac{BD}{CE}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\dfrac{AB^4}{AB}\cdot\dfrac{AC}{AC^4}=\dfrac{AB^3}{AC^3}\)
Bài 1:
Áp dụng định lí pytago trong tam giác vuông ABC ta có:
BC2=AC2+AB2
BC2=42+32
BC=\(\sqrt{25}\)=5(cm)
Ta có:
Sin B=\(\dfrac{AC}{BC}=\dfrac{4}{5}=0.8\)
Cos B=\(\dfrac{AB}{BC}=\dfrac{3}{5}=0.6\)
Tag B=\(\dfrac{AC}{AB}=\dfrac{4}{3}\)
Cotg B=\(\dfrac{AB}{AC}=\dfrac{3}{4}=0.75\)
....