K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2023

a:

Ta có: \(\widehat{ABC}+\widehat{ABE}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACF}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABE}=\widehat{ACF}\)

Xét ΔABE và ΔACF có

AB=AC

\(\widehat{ABE}=\widehat{ACF}\)(cmt)

BE=CF

Do đó: ΔABE=ΔACF

=>AE=AF

=>ΔAEF cân tại A

b: Xét ΔBHE vuông tại H và ΔCKF vuông tại K có

BE=CF

\(\widehat{E}=\widehat{F}\)(ΔABE=ΔACF)

Do đó: ΔBHE=ΔCKF

c: Ta có: ΔBHE=ΔCKF

=>BH=CK và \(\widehat{HBE}=\widehat{KCF}\) và EH=KF

Ta có: AH+HE=AE

AK+KF=AF

mà HE=KF và AE=AF

nên AH=AK

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

AH=AK

Do đó: ΔAHI=ΔAKI

=>IH=IK

=>ΔIHK cân tại I

 

a: Ta có: AE+BE=AB

AF+FC=AC

mà AB=AC

và BE=FC

nên AE=AF

hay ΔAEF cân tại A

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

=>\(\widehat{AEF}=\widehat{ABC}=\widehat{ACB}\)

 

a: Xét ΔABE và ΔACF có

AB=AC
góc ABE=góc ACF

BE=CF

=>ΔABE=ΔACF

=>AE=AF
b: Xét ΔBNE vuông tại N và ΔCMF vuông tại M có

BE=CF

góc BEN=góc CFM

=>ΔBNE=ΔCMF

=>BN=CM

c: góc IBC=góc NBE

góc ICB=góc MCF

góc NBE=góc MCF
=>góc IBC=góc ICB

=>IB=IC

 

17 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Ta có:

  • B1 + B2 = 180
  • C1 + C2 = 180 

mà B1 = C1 (tam giác ABC cân tại A)

=> B2 = C2 (1)

Xét tam giác ADB và tam giác AEC:

AB = AC (tam giác ABC cân tại A)

B2 = C2 (theo 1)

BD = CE (gt)

=> Tam giác ADB = ACE (c.g.c)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE

b.

Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:

 AB = AC (tam giác ABC cân tại A)

A1 = A2 (tam giác ADB = tam giác AEC)

=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

     AH = AK (2 cạnh tương ứng)

c.

Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:

BH = CK (theo câu b)

BD = CE (gt)

=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)

Ta có: 

DBH = IBC (2 góc đối đỉnh)

KCE = ICB (2 góc đối đỉnh)

mà DBH = KCE (tam giác HDB = tam giác KEC)

=> IBC = ICB 

=> Tam giác IBC cân tại I

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: HA=KA

31 tháng 1 2022

a) Xét \(\Delta ADB\) và \(\Delta AEC\) có:

\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))

\(\widehat{ABD}=\widehat{ACE}\)

\(BD=CE\) (giả thiết)

\(\Rightarrow\Delta ADB=\Delta AEC\left(c.g.c\right)\)

\(\Rightarrow AD=AE\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta ADE\) cân tại \(A\)

b) Vì \(\Delta ADE\) cân tại \(A\)

\(\Rightarrow\widehat{ADB}=\widehat{ACE}\) (\(2\) góc tương ứng)

Ta có: \(\left\{{}\begin{matrix}\widehat{ADB}+\widehat{HBD}=90^o\\\widehat{ACE}+\widehat{KCE}=90^o\end{matrix}\right.\) (\(2\) góc phụ nhau)

Từ hai điều trên \(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

Mà \(\left\{{}\begin{matrix}\widehat{HBD}=\widehat{CBI}\\\widehat{KCE}=\widehat{BCI}\end{matrix}\right.\) (\(2\) góc đối đỉnh)

Từ đó \(\Rightarrow\widehat{CBI}=\widehat{BCI}\)

\(\Rightarrow\Delta BIC\) cân tại \(I\)

c) Xét \(\Delta ABI\) và \(\Delta ACI\) có:

\(AB=AC\) (giả thiết)

\(BI=CI\) (do \(\Delta BIC\) cân tại \(I\))

\(AI\) là cạnh chung

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (\(2\) góc tương ứng)

\(\Rightarrow AI\) là tia phân giác \(\widehat{BIC}\)

a; Xét ΔABD và ΔACE có 

AB=AC
\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

hay ΔADE cân tại A

b: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE
\(\widehat{D}=\widehat{E}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

hay \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết