K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(AN=NC=\dfrac{AC}{2}\)

mà AB=AC

nên AM=MB=AN=NC

Xét ΔABN và ΔACM có

AB=AC
\(\widehat{BAN}\) chung

AN=AM

Do đó: ΔABN=ΔACM

=>BN=CM

b: Xét ΔMBC và ΔNCB có

MB=NC

MC=NB

BC chung

Do đó: ΔMBC=ΔNCB

=>\(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{GBC}=\widehat{GCB}\)

=>ΔGBC cân tại G

c: Xét ΔABC có

BN,CM là các đường cao

BN cắt CM tại G

Do đó: G là trọng tâm của ΔABC

Xét ΔABC có

G là trọng tâm

AG cắt BC tại D

DO đó: \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot3=2\left(cm\right)\)

13 tháng 2 2020

A B C M N = =

a) Ta có: 

AM + MB = AB

AN + NC = AC

Mà AB = AC(△ABC cân) và AM = AN (gt)

=> MB = NC

Xét △MBC và △NCB có:

MB = NC (cmt)

MBC = NCB (△ABC cân)

BC: chung

=> △MBC = △NCB (c.g.c)

=> BN = CM (2 cạnh tương ứng)

b) Vì △MBC = △NCB

=> MCB = NBC (2 góc tương ứng)

=> △BOC cân

c) Vì AM = AN (gt)

=> △AMN cân tại A

=> AMN = \(\frac{180^o-A}{2}\)(1)

Vì △ABC cân tại A

=> ABC = \(\frac{180^o-A}{2}\)(2)

Từ (1) và (2) => AMN = ABC

Mà hai góc AMN và  ABC ở vị trí đồng vị

=> MN // BC