Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
A B M P O H I N
c/
1/ Xét \(\Delta PMI\) và \(\Delta PBM\) có
\(\widehat{BPM}\) chung
\(sđ\widehat{IMP}=\frac{1}{2}sđ\) cung MI (Góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{PBM}=\frac{1}{2}sđ\)cung MI (Góc nội tiếp đường tròn)
\(\Rightarrow\widehat{IMP}=\widehat{PBM}\)
\(\Rightarrow\Delta PMI\) đồng dạng \(\Delta PBM\) (g.g.g) \(\Rightarrow\frac{PI}{PM}=\frac{PM}{PB}\Rightarrow PI.PB=PM^2\left(dpcm\right)\)
2/ Ta có
\(AB\perp PO\) (Hai tiếp tuyến cùng xp từ 1 điểm ở ngoài đường tròn thì đường nối điểm đó với tâm đường tròn vuông góc với đường nối 2 tiếp điểm)
Xét tg vuông PMO
\(PH.PO=PM^2\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh đó trên cạnh huyền với cạnh huyền) (đpcm)
3/
Lời giải:
a. Vì $AM$ là đường kính nên $\widehat{ABM}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow BM\perp AB$
Mà $CH\perp AB$ nên $BM\parallel CH(1)$
Tương tự: $\widehat{ACM}=90^0$ nên $AC\perp CM$
Mà $AC\perp BH$ nên $CM\parallel BH(2)$
Từ $(1); (2)$ suy ra $BHCM$ là hbh (tứ giác có 2 cặp cạnh đối song song)
b.
$\widehat{BAN}=90^0-\widehat{ABD}=90^0-\widehat{ABC}$
$=90^0-\widehat{AMC}$ (góc nt cùng chắn cung AC)
$=\widehat{MAC}$ (đpcm)
Vì $\widehat{BAN}=\widehat{MAC}$
$\Rightarrow \widehat{BAN}+\widehat{NAM}=\widehat{MAC}+\widehat{NAM}$
$\Leftrightarrow \widehat{BAM}=\widehat{CAN}$
$\Leftrightarrow \frac{1}{2}\text{sđc(BM)}=\frac{1}{2}\text{sđc(CN)}$
$\Leftrightarrow \widehat{BCM}=\widehat{CBN}(*)$
Lại có:
$\widehat{ANM}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow AN\perp MN$
Mà $AN\perp BC\Rightarrow MN\parallel BC$
$\Rightarrow BNMC$ là hình thang $(**)$
Từ $(*); (**)$ suy ra $BNMC$ là htc.
là sao bạn
ròi bạn sẽ
biết