\(\widehat{A}\)=20 độ .CMR \(a^2+b^2=3ab...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

Anh ơi sai đề r ạ, nếu ko tin anh có thể thử lại, e đã phân tích ra nhưng 2 vế ko thể bằng nhau đc đâu ạ :))

4 tháng 8 2019

Đề là a3+b3=3ab2

Bài 4. ÔN TẬP CHƯƠNG III

2 tháng 8 2019

Theo định lý hàm cos vs \(\widehat{A}=20^0\)

\(\Rightarrow a^2=b^2+c^2-2bc.\cos20\)

\(\Leftrightarrow a^2=2b^2-2b^2.\cos20\)

\(\Leftrightarrow a^2=2b^2\left(1-\cos20\right)=2b^2.2\sin^210\)

\(\Leftrightarrow a^2=4b^2.\sin^210\Leftrightarrow a=2b.\sin10\)

Thay vào:

\(a^3+b^3=8b^3.\sin^310+b^3=b^3\left(8\sin^310+1\right)\)

lm đến đây là tắc r ạ :))

2 tháng 8 2019

ra luôn này anh ơi :))

\(VT=b^3\left(8\sin^310+1\right)\)

\(VP=6\sin10.b^3\)

Vậy cần CM \(8\sin^310+1=6\sin10\)

\(\sin^310=\frac{3\sin10-\sin30}{4}\)

=> \(8\sin^310+1=2\left(3\sin10-\sin30\right)+1\)

\(=6\sin10-1+1=6\sin10=VP\)

Bài 1:

a) Ta có: \(\widehat{A}:\widehat{B}:\widehat{C}=2:3:4\)

\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)

Xét ΔABC có

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí tổng ba góc trong một tam giác)

Ta có: \(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{2+3+4}=\frac{180^0}{9}=20^0\)

Do đó, ta được

\(\left\{{}\begin{matrix}\frac{\widehat{A}}{2}=20^0\\\frac{\widehat{B}}{3}=20^0\\\frac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=20^0\cdot2=40^0\\\widehat{B}=20^0\cdot3=60^0\\\widehat{C}=20^0\cdot4=80^0\end{matrix}\right.\)

Vậy: \(\widehat{A}=40^0\); \(\widehat{B}=60^0\); \(\widehat{C}=80^0\)

Bài 2:

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD là cạnh chung

\(\widehat{ABD}=\widehat{EBD}\)(do BD là tia phân giác của \(\widehat{EBA}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

⇒AB=EB(hai cạnh tương ứng)

Xét ΔAEB có AB=EB(cmt)

nên ΔAEB cân tại B(định nghĩa tam giác cân)

Xét ΔAEB cân tại B có \(\widehat{EBA}=60^0\)(gt)

nên ΔAEB đều(dấu hiệu nhận biết tam giác đều)

c) Ta có: ΔABC vuông tại A(gt)

\(\widehat{C}=30^0\)

nên \(AB=\frac{BC}{2}\)(trong một tam giác vuông, cạnh đối diện với góc 300 thì bằng nửa cạnh huyền)

hay BC=2AB=2*5=10cm

Vậy: BC=10cm

Bài 3:

Xét ΔABC có

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

\(AM=\frac{BC}{2}\)(gt)

Do đó: ΔABC vuông tại A(định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=90^0-\widehat{C}=90^0-15^0=75^0\)

Vậy: \(\widehat{B}=75^0\)

30 tháng 12 2022

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{c^2+b^2-a^2}{2\cdot b\cdot c}=\dfrac{1}{2}\)

=>\(c^2+b^2-a^2=b\cdot c\)

=>\(\dfrac{b}{b^2-a^2}=\dfrac{c}{a^2-c^2}\)

NV
25 tháng 5 2020

d/ \(B=180^0-\left(A+C\right)=75^0\)

\(\Rightarrow b=c=4,5\)

\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}=\frac{9}{4}\left(\sqrt{6}-\sqrt{2}\right)\)

e/ \(cosA=\frac{b^2+c^2-a^2}{2bc}\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}\approx23\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{433}{460}\Rightarrow B\approx19^043'\)

\(\Rightarrow C=180^0-\left(A+B\right)=...\)

f/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{11}{15}\Rightarrow A\approx42^050'\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{17}{35}\Rightarrow B\approx60^056'\)

\(C=180^0-\left(A+B\right)=...\)

NV
25 tháng 5 2020

a/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=-\frac{1}{2}\Rightarrow A=120^0\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)

\(C=180^0-\left(A+B\right)=15^0\)

b/\(A=180^0-\left(B+C\right)=79^037'\)

\(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\Rightarrow\left\{{}\begin{matrix}b=\frac{sinB}{sinA}.a\approx61\\c=\frac{sinC}{sinA}.a\approx102\end{matrix}\right.\)

c/\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow sinB=\frac{bsinA}{a}\approx0,6\Rightarrow B\approx36^052'\)

\(\Rightarrow C=180^0-\left(A+B\right)=75^045'\)

\(\frac{a}{sinA}=\frac{c}{sinC}\Rightarrow c=\frac{a.sinC}{sinA}\approx21\)

30 tháng 3 2017

= 320; b = a.cos320 => b ≈ 61,06cm; c = a.sin320 ≈ 38,15cm

ha = => ha ≈ 32,35cm

19 tháng 5 2017

Các hệ thức lượng giác trong tam giác và giải tam giác