\(a=2\sqrt{3},b=2\sqrt{2},c=\sqrt{6}-\sqrt{2}\)

2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 5 2020

d/ \(B=180^0-\left(A+C\right)=75^0\)

\(\Rightarrow b=c=4,5\)

\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}=\frac{9}{4}\left(\sqrt{6}-\sqrt{2}\right)\)

e/ \(cosA=\frac{b^2+c^2-a^2}{2bc}\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}\approx23\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{433}{460}\Rightarrow B\approx19^043'\)

\(\Rightarrow C=180^0-\left(A+B\right)=...\)

f/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{11}{15}\Rightarrow A\approx42^050'\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{17}{35}\Rightarrow B\approx60^056'\)

\(C=180^0-\left(A+B\right)=...\)

NV
25 tháng 5 2020

a/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=-\frac{1}{2}\Rightarrow A=120^0\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)

\(C=180^0-\left(A+B\right)=15^0\)

b/\(A=180^0-\left(B+C\right)=79^037'\)

\(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\Rightarrow\left\{{}\begin{matrix}b=\frac{sinB}{sinA}.a\approx61\\c=\frac{sinC}{sinA}.a\approx102\end{matrix}\right.\)

c/\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow sinB=\frac{bsinA}{a}\approx0,6\Rightarrow B\approx36^052'\)

\(\Rightarrow C=180^0-\left(A+B\right)=75^045'\)

\(\frac{a}{sinA}=\frac{c}{sinC}\Rightarrow c=\frac{a.sinC}{sinA}\approx21\)

12 tháng 4 2017

a) \(c^2=a^2+b^2-2abcosC\)

\(=7^2+10^2-2\times7\times10\times cos56^o29\)

\(\approx71,69\Rightarrow c\approx8,5\)

b) \(b^2=a^2+c^2-2accosB\)

\(=2^2+3^2-2\times2\times3\times cos123^o17\)

\(\approx17,4\Rightarrow b\approx4,2\)

c) \(a^2=b^2+c^2-2bccosA\)

= \(0^2+12^2-2\times0\times12\times cos23^o28\)

\(=144\Rightarrow a\approx12\)

1 tháng 4 2017

Giải bài 11 trang 161 SGK Đại Số 10 | Giải toán lớp 10

Ta có : \(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}\)

\(\Leftrightarrow\frac{2b.sinA}{sinB}.sinB=b\sqrt{3}\)

\(\Leftrightarrow2b.sinA=b\sqrt{3}\)

\(\Leftrightarrow sinA=\frac{\sqrt{3}}{2}\Rightarrow\widehat{A}=60^0\)

19 tháng 5 2017

Các hệ thức lượng giác trong tam giác và giải tam giác