K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
12 tháng 4 2017
a) \(c^2=a^2+b^2-2abcosC\)
\(=7^2+10^2-2\times7\times10\times cos56^o29\)
\(\approx71,69\Rightarrow c\approx8,5\)
b) \(b^2=a^2+c^2-2accosB\)
\(=2^2+3^2-2\times2\times3\times cos123^o17\)
\(\approx17,4\Rightarrow b\approx4,2\)
c) \(a^2=b^2+c^2-2bccosA\)
= \(0^2+12^2-2\times0\times12\times cos23^o28\)
\(=144\Rightarrow a\approx12\)
4 tháng 4 2020
Ta có : \(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}\)
\(\Leftrightarrow\frac{2b.sinA}{sinB}.sinB=b\sqrt{3}\)
\(\Leftrightarrow2b.sinA=b\sqrt{3}\)
\(\Leftrightarrow sinA=\frac{\sqrt{3}}{2}\Rightarrow\widehat{A}=60^0\)
d/ \(B=180^0-\left(A+C\right)=75^0\)
\(\Rightarrow b=c=4,5\)
\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}=\frac{9}{4}\left(\sqrt{6}-\sqrt{2}\right)\)
e/ \(cosA=\frac{b^2+c^2-a^2}{2bc}\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}\approx23\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{433}{460}\Rightarrow B\approx19^043'\)
\(\Rightarrow C=180^0-\left(A+B\right)=...\)
f/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{11}{15}\Rightarrow A\approx42^050'\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{17}{35}\Rightarrow B\approx60^056'\)
\(C=180^0-\left(A+B\right)=...\)
a/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=-\frac{1}{2}\Rightarrow A=120^0\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)
\(C=180^0-\left(A+B\right)=15^0\)
b/\(A=180^0-\left(B+C\right)=79^037'\)
\(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\Rightarrow\left\{{}\begin{matrix}b=\frac{sinB}{sinA}.a\approx61\\c=\frac{sinC}{sinA}.a\approx102\end{matrix}\right.\)
c/\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow sinB=\frac{bsinA}{a}\approx0,6\Rightarrow B\approx36^052'\)
\(\Rightarrow C=180^0-\left(A+B\right)=75^045'\)
\(\frac{a}{sinA}=\frac{c}{sinC}\Rightarrow c=\frac{a.sinC}{sinA}\approx21\)