Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta chứng minh bất đẳng thức sau \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)
Thật vậy, bất đẳng thức trên tương đương với \(\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge2ax+2by\Leftrightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Bất đẳng thức cuối cùng là bất đẳng thức Bunyakovsky nên (*) đúng
Áp dụng bất đẳng thức trên ta có \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{a^2}}\)\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
Ta cần chứng minh \(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{153}{4}\)
Thật vậy, áp dụng bất đẳng thức Cauchy và chú ý giả thiết \(a+b+c\le\frac{3}{2}\), ta được:\(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}\)\(=\left(a+b+c\right)^2+\frac{81}{16\left(a+b+c\right)^2}+\frac{1215}{16\left(a+b+c\right)^2}\)\(\ge2\sqrt{\left(a+b+c\right)^2.\frac{81}{16\left(a+b+c\right)^2}}+\frac{1215}{16.\frac{9}{4}}=\frac{153}{4}\)
Bất đẳng thức đã được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
định lý hàm số sin:
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
\(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 90o
vậy tam giác ABC vuông tại A
b/cosB+c/cosC=a/sinB.sinC (*)
Áp dụng định lý hàm số sin:
a/sinA = b/sinB = c/sinC = 2R
=> a = 2R.sinA = 2R.sin[1800 - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
2R.sinB/cosB + 2RsinC/cosC = 2R.sin(B+C)/(sinB.sinC)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 900
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{c^2+b^2-a^2}{2\cdot b\cdot c}=\dfrac{1}{2}\)
=>\(c^2+b^2-a^2=b\cdot c\)
=>\(\dfrac{b}{b^2-a^2}=\dfrac{c}{a^2-c^2}\)
Thay abc = 1 vào bđt cần chứng minh :
\(a+b+c\ge\frac{a\left(bc+1\right)}{b\left(ac+1\right)}+\frac{b\left(ac+1\right)}{c\left(ab+1\right)}+\frac{c\left(ab+1\right)}{a\left(bc+1\right)}\)
\(\Leftrightarrow a\left(1-\frac{bc+1}{ac+1}\right)+b\left(1-\frac{ac+1}{ab+1}\right)+c\left(1-\frac{ab+1}{bc+1}\right)\ge0\)
\(\Leftrightarrow\frac{ac\left(a-b\right)}{ac+1}+\frac{ab\left(b-c\right)}{ab+1}+\frac{bc\left(c-a\right)}{bc+1}\ge0\)
\(\Leftrightarrow\frac{ac\left[-\left(c-a\right)-\left(b-c\right)\right]}{ac+1}+\frac{ab\left[-\left(a-b\right)-\left(c-a\right)\right]}{ab+1}+\frac{bc\left[-\left(b-c\right)-\left(a-b\right)\right]}{bc+1}\ge0\)
\(\Leftrightarrow\left[\frac{-ac\left(c-a\right)}{ac+1}-\frac{ab\left(c-a\right)}{ab+1}\right]+\left[-\frac{ac\left(b-c\right)}{ac+1}-\frac{bc\left(b-c\right)}{bc+1}\right]+\left[-\frac{ab\left(a-b\right)}{ab+1}-\frac{bc\left(a-b\right)}{bc+1}\right]\ge0\)
\(\Leftrightarrow-a\left(c-a\right)\left(c+b\right)\left(\frac{1}{ac+1}+\frac{1}{ab+1}\right)-c\left(b-c\right)\left(a+b\right)\left(\frac{1}{ac+1}+\frac{1}{bc+1}\right)-b\left(a-b\right)\left(a+c\right)\left(\frac{1}{ab+1}+\frac{1}{bc+1}\right)\ge0\)(1)
Đặt \(x=\frac{1}{ab+1},y=\frac{1}{bc+1},z=\frac{1}{ac+1}\)
Tiếp tục phân tích : \(-c\left(b-c\right)\left(a+b\right).x-b\left(a-b\right)\left(a+c\right).y=-c\left(a+b\right).x\left[-\left(c-a\right)-\left(a-b\right)\right]-b\left(a+c\right).y\left[-\left(b-c\right)-\left(c-a\right)\right]\)
\(=\left(c-a\right).\left[c\left(a+b\right)x+b\left(a+c\right)y\right]+c\left(a+b\right)\left(a-b\right).x+b\left(a+c\right)\left(b-c\right).y\)
Tới đây giả sử \(a\ge b\ge c>0\) là ra nhé :)
Lời giải:
Ta có:
\(\text{VT}=\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}=\frac{a^3}{b^2+ab+bc+ac}+\frac{b^3}{c^2+ab+bc+ac}+\frac{c^3}{a^2+ab+bc+ac}\)
\(=\frac{a^3}{(b+a)(b+c)}+\frac{b^3}{(c+a)(c+b)}+\frac{c^3}{(a+b)(a+c)}\)
Áp dụng BĐT AM-GM:
\(\frac{a^3}{(b+a)(b+c)}+\frac{b+a}{8}+\frac{b+c}{8}\geq 3\sqrt[3]{\frac{a^3}{8.8}}=\frac{3a}{4}\)
\(\frac{b^3}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq \frac{3b}{4}\)
\(\frac{c^3}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq \frac{3c}{4}\)
Cộng theo vế và rút gọn thu được:
\(\text{VT}\geq \frac{a+b+c}{4}\)
Tiếp tục áp dụng BĐT AM-GM: \((a+b+c)^2\geq 3(ab+bc+ac)=9\Rightarrow a+b+c\geq 3\)
Do đó: \(\text{VT}\geq \frac{3}{4}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Theo em bài này có 2 lỗi sai, thứ nhất:
Theo BĐT dòng 3 thì ta có :\(a+b+c\ge1\)
Tuy nhiên dấu đẳng thức lại xảy ra khi \(a=1,b=c=0\) (Thực ra thay đẳng thức a = b = c = 1 vào nó cũng không thỏa mãn!)
Thứ 2: Dòng kế cuối, nếp áp dụng BĐT dòng 4 thì: \(\left(\frac{a+b+c}{3}\right)^2=\frac{\left(a+b+c\right)^2}{9}\ge\frac{\left(a+b+c\right)}{9}\ge\frac{\sqrt[3]{abc}}{3}?!\)