Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E M N 1 1 2 2 3 3
Bài làm
a) Vì tam giác ABC cân tại A
=> Góc ABC = góc ACB ( 2 góc ở đáy )
Xét tam giác ABC ta có:
A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )
hay ABC + ACB = 180o - A
=> 2ABC = 180o - A ( 1 )
Ta có: AB + BD = AD
AC + CE = AE
Mà AB = AC ( giả thiết )
BD = CE ( giả thiết )
=> AD = AE
=> Tam giác ADE cân tại A
=> Góc D = góc E
Xét tam giác ADE
Ta có: A + D + E = 180o
hay D + E = 180o - A
=> 2D = 180o - A ( 2 )
Từ ( 1 ) và( 2 ) => 2D = 2ABC
=> D = ABC
Mà góc D và góc ABC ở vị trí đồng vị
=> DE // BC ( đpcm )
b) Ta có: B1 = B2 ( 2 góc đối đỉnh )
C1 = C2 ( 2 góc đối đỉnh )
Mà B1 = C1 ( tam giác ABC cân tại A )
=> B2 = C2
Xét tam giác MBD và tam giác NCE
có: Góc BMD = góc CNE = 90o
cạnh huyền: BD = CE ( giả thiết )
Góc nhọn: B2 = C2 ( chứng minh trên )
=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )
=> MB = NC. ( 2 cạnh tương ứng )
Ta có: MB + BC = MC
NC + BC = NB
Mà MB = NC ( chứng minh trên )
Cạnh BC chung
=> MC = NB
Xét tam giác ACM và tam giác ABN
Có: AB = AC ( giả thiết )
B1 = C1 ( Tam giác ABC cân tại A )
MC = NB ( chứng minh trên )
=> Tam giác ACM = tam giác ABN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
=> Tam giác AMN cân tại A ( đpcm )
~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~
a) Vì AB=AC mà BD=CE
Suy ra : AB+BD=AC+CE
Suy ra AD= AE
Suy ra tam giác DAE cân tại A
Suy ra \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)
Ta có tam giác ABC cân tại A
suy ra \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)
Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)
mà hai góc ở vị trí đồng vị . Suy ra \(DE//BC\)
a) Vì AH = HD => EH là đg trung tuyến của tg ADE
Khi đó C thuộc đg trung tuyến EH (1)
Do tg ABC cân tại A
mà AH là đg cao của tg ABC
=> AH là đg trung trực của tg ABC
=> BH = CH
=> BH = CH = 1/2 BC
Lại do BC = CE
=> CH = 1/2 CE
hay CE = 2/3 EH (2)
Từ (1); (2) => C là trọng tâm tg ADE.
Xét ΔAHBΔAHB và ΔAHCΔAHC có :
HAHA chung
HB=HCHB=HC ( AH là đường trung tuyến của BC )
AB=ACAB=AC ( ΔABCΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ⇒AHB^=AHC^ ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=180oAHB^+AHC^=180o ( hai góc kề bù )
⇒AHBˆ=AHCˆ=180o2=90o⇒AHB^=AHC^=180o2=90o
Xét ΔAHEΔAHE và ΔHEDΔHED có :
HEHE chung
HA=HDHA=HD ( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=90o)AHE^=DHE^(=90o)
Do đó : ΔAHE=ΔDHEΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ⇒AEH^=DEH^ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAEDΔAED ⇒AM⇒AM là đường trung tuyến của DE )
⇒DM=ME⇒DM=ME
Xét ΔHEDΔHED vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DEHM=12DE. Mà 12DE=DM12DE=DM⇒HM=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ⇒MHE^=MEH^
Dễ thấy MEHˆ=HEAˆ(cmt)MEH^=HEA^(cmt) ở cái (*)
⇒MHEˆ=HEAˆ⇒MHE^=HEA^
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AEAE (đpcm)
B B C C A A D D E E H H K K
a) Do tam giác ABC cân tại A nên \(AB=AC;\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Vậy thì \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow\widehat{KDC}=\widehat{HEB}\)
Lại có DC = DB + BC = CE + BC = BE
Vậy thì \(\Delta DKC=\Delta EHB\) (Cạnh huyền góc nhọn)
\(\Rightarrow BH=CK\)
c) Xét hai tam giác vuông ABH và ACK có :
BH = CK
AC = AC
\(\Rightarrow\Delta BAH=\Delta CAK\) (Cạnh huyền - cạnh góc vuông)
a) \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow\)\(AB=AC\)(1); \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)(2)
\(BD=CE\)(3)
Lấy (1) + (3) theo vế ta có:
\(AB+BD=AC+CE\)
\(\Leftrightarrow\)\(AD=AE\)
\(\Rightarrow\)\(\Delta ADE\)cân tại \(A\)
\(\Rightarrow\)\(\widehat{ADE}=\frac{180^0-\widehat{BAC}}{2}\)(4)
Từ (2) và (4) suy ra: \(\widehat{ABC}=\widehat{ADE}\)
mà \(\widehat{ABC}\)và \(\widehat{ADE}\)đồng vị
\(\Rightarrow\)\(DE\)\(//\)\(BC\)