Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{ACB}\)= \(\widehat{ECN}\)(2 góc đối đỉnh)
Vì \(\Delta\)ABC cân tại A nên \(\widehat{ABC}\)= \(\widehat{ACB}\)\(\Rightarrow\)\(\widehat{ABC}\)= \(\widehat{ECN}\)
Xét \(\Delta\)MDB và \(\Delta\)NEC, có:
\(\widehat{MDB}\)= \(\widehat{NEC}\)= \(90^o\)(gt)
BD = CE(gt)
\(\widehat{ABC}\)=\(\widehat{ECN}\)(cmt)
\(\Rightarrow\)\(\Delta\)MDB = \(\Delta\)NEC (g.c.g)
\(\Leftrightarrow\)DM = EN ( 2 cạnh tương ứng ) <đpcm>
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
CM : a) Ta có: t/giác ABC cân tại A
=> góc B2 = góc C2
Mà góc B1 + góc B2 = 1800
góc C1 + góc C2 = 1800
=> góc B1 = góc C1
Xét t/giác AMB và t/giác ANC
có AB = AC (gt)
góc B1 = góc C1 (cmt)
MB = NC (gt)
=> t/giác AMB = t/giác ANC (c.g.c)
=> AM = AN (hai cạnh tương ứng)
=> t/giác AMN là t/giác cân tại A
b) Ta có: t/giác AMN cân tại A
=> góc M = góc N
Xét t/giác BME và t/giác CNF
có góc E1 = góc F1 = 900 (gt)
BM = CN (gt)
góc M = góc N (cmt)
=> t/giác BME = t/giác CNF (cạnh huyền - góc nhọn)
c,d) tự làm
a) tam giác ABC cân tại A => góc B= góc C1
Mà góc C1= C2 (đối đỉnh)
Từ 2 điều trên => góc B= góc C2
Xét tam giác MDA và tam giác NEC, có:
góc B= góc C2
góc D1= góc E (= 90 độ) }=> tam giác MDA = tam giác NEC ( cạnh huyền- góc nhọn)
MB=NC (gt)
b) Vì tam giác MDA = tam giác NEC(c/m a) => DM= EN ( 2 cạnh tg ứng)
Ta có: DM vuông góc BC và EN vuông góc BC
=> DM//EN
=> góc DMI= góc ENI ( so le trong)
Xét tam giác MID và tam giác NIE, có:
góc DMI= góc ENI(c/m trên)
DM= EN (c/m trên) }=>tam giác MID = tam giác NIE ( g.c.g)
góc MDI= góc IEN (=90 độ)
c)Ta có: AO là p/giác góc A
Mà tam giác ABC cân tại A
=> AO đồng thời là đường trung trực
=> OB=OC
d) Vì tam giác MID = tam giác NIE (c/m b)
=> MI= IN
Mà OI vuông góc MN
=> OI là trung trực MN
=> OM=ON
Xét tam giác MBo và tam giác NCO, có:
OM=ON(c/m trên)
BM=CN (gt) }=> tam giác MBO= tam giác NCO (c.c.c)
OB=OC(c/m c)
câu e bạn ơi