K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2021

Kẻ đường cao AH.giả sử \(BM\le MC\)

Ta có: \(AB^2-AM^2=\left(AH^2+BH^2\right)-\left(AH^2+MH^2\right)\)\(=BH^2-MH^2=\left(BH+MH\right)\left(BH-MH\right)=\left(CH+MH\right).MB=MC.MB\)

25 tháng 7 2020

tam giác BMH đồng dạng với tam giác MCI => \(\frac{BM}{MC}=\frac{MH}{CI}=\frac{BH}{MI}\left(1\right)\)

từ (1) => MB.MC=\(\frac{MH}{CI}\).MC2=\(\frac{MH}{CI}\left(MI^2+IC^2\right)\)=MH.IC+\(\frac{MI}{IC}\cdot MI^2\)

hay MB.MC=IA.IC+\(\frac{BH}{MI}\cdot MI^2\)\(=IA\cdot IA+HB\cdot MI=IA\cdot IC+HB\cdot HA\)

a: Xét ΔMBA và ΔMAC có

góc MAB=góc MCA

góc M chung

=>ΔMBA đồng dạng với ΔMAC

=>MB/MA=MA/MC

=>MA^2=MB*MC

=>MC/MB=AB^2/AC^2

b: EF//AM

AM vuông góc OA

=>EF vuông góc OA

=>góc AEF+góc OAE=90 độ

=>góc AEF+(180 độ-góc AOB)/2=90 độ

=>góc AEF+90 độ-góc ACB=90 độ

=>gócAEF=góc ACB

=>góc BEF+góc BCF=180 độ

=>BEFC nội tiếp

=>góc BEC=góc BFC=90 độ

Xét ΔABC có

BF,CE là đường cao

BF căt CE tại H

=>H là trực tâm

=>AH vuông góc CB tại D

a: Xét ΔMBA và ΔMAC có

góc MAB=góc MCA

góc M chung

=>ΔMBA đồng dạng với ΔMAC

=>MB/MA=MA/MC

=>MA^2=MB*MC

=>MC/MB=AB^2/AC^2

b: EF//AM

AM vuông góc OA

=>EF vuông góc OA

=>góc AEF+góc OAE=90 độ

=>góc AEF+(180 độ-góc AOB)/2=90 độ

=>góc AEF+90 độ-góc ACB=90 độ

=>gócAEF=góc ACB

=>góc BEF+góc BCF=180 độ

=>BEFC nội tiếp

=>góc BEC=góc BFC=90 độ

Xét ΔABC có

BF,CE là đường cao

BF căt CE tại H

=>H là trực tâm

=>AH vuông góc CB tại D

Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.1. Chứng minh tứ giác CEHD nội tiếp .2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn.3. Chứng minh ED = 1/2 BC.4. Chứng minh DE là tiếp tuyến của đường tròn (O).5. Tính độ dài DE biết DH = 2 cm, AH = 6 cm.Bài 3. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua...
Đọc tiếp

Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.

1. Chứng minh tứ giác CEHD nội tiếp .

2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Chứng minh ED = 1/2 BC.

4. Chứng minh DE là tiếp tuyến của đường tròn (O).

5. Tính độ dài DE biết DH = 2 cm, AH = 6 cm.

Bài 3. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. Chứng minh:

1. AC + BD = CD

2. Góc COD = 900

3. AC.BD = 1/4 AB2

4. OC // BM

5. AB là tiếp tuyến của đường tròn đường kính CD.

6. MN vuông góc AB.

7. Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất.

0