K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: dễ, nếu cậu tk tớ sẽ giải

Bài 2: ( tự vẽ hình nhess)

Xét tam giác ABN có BC là trung tuyến ứng AN(CA=CN-gt)

mà BM=2/3 BC

=> M la trọng tâm tam giác ABN( khoảng cách từ điểm đến trọng tâm bằng 2/3 trung tuyến tương ứng)

=> AM là trung tuyến ứng BN

mà AM được kéo dài cắt BN tại I nên I là trung điểm BN

*,tam giác HAB bằng tam giác HAC (ch-cgv)                                                                                                                                          suy ra HA=HB mà AH vuông góc với BC nên AH là đương trung trực của BC

do đó:MH là đường trung trực của BC => MB=MC

*,ta có AH la đường trung tuyến của tam giác vuông nên AH= BC/2=BH (định lí)

mặt khác BH<BM(quan hệ đường xiên và đượng vuông góc)

Do đó: AH<BM

2 tháng 4 2017

xét tam giác BMH và tam giác CMH có góc BHM= góc CHM=90 độ  

                                                           BM=CM

                                                           HM là cạnh chung

=>BH=CH

=> H là trung điểm cạnh BC

 Xét tam giác vuông ABC vuông tại A có  H là trung điểm cạnh BC       

=> AH=BH (1)

Xét tam giác BHM vông tại H => BM là cạnh lớn nhất => BM>BH (2) 

Từ (1)(2)=> BM>AH                                                   

           

16 tháng 1 2019

xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)

suy ra tam giác ABM=tam giác ACN(c.g.c)

suy ra AM=AN

suy ra tam giác AMN cân tại A

16 tháng 1 2019

b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)

suy ra tam giác AHB= tam giác AKC(ch-gn)

suy ra BH=CK

13 tháng 2 2016

Vẽ hình ra cko mình nhaa bn

13 tháng 2 2016

O cau b la diem E thuộc AB nka

12 tháng 1 2016

Bạn nào tick cho tui thì may mắn cả năm còn ai ko tick sẽ xui cả năm lun

Nào thì ô tô đâm,bóng điện rôi vào đầu 

KO tick sẽ như thế

chúc ai ko tick xui cả năm nay

 

16 tháng 3 2018

A B C M D

a) Xét tam giác MDC, theo bất đẳng thức trong tam giác ta có:

MC < MD + DC

Vậy thì DB + DC = BM + MD + DC > BM + CM

b) Xét tam giác ABD, áp dụng bất đẳng thức trong tam giác thì AB + AD > BD

Vậy nên AB + AC = AB + AD + DC > BD + DC

Lại theo câu a thì DB + DC > BM + CM

Vậy nên AB + AC > BM + CM

c) Chứng minh tương tự ta có các khẳng đỉnh sau:

AB + BC > MA + MC

BC + AC > MB + MA

Cộng vế với 3 bất đẳng thức ta có:

2(AB + BC + CA) > 2(MA + MB + MC)

\(\Rightarrow MA+MB+MC< AB+BC+CA.\) 

13 tháng 8 2018

Bài giải : 

a) Xét tam giác MDC, theo bất đẳng thức trong tam giác ta có:

MC < MD + DC

Vậy thì DB + DC = BM + MD + DC > BM + CM

b) Xét tam giác ABD, áp dụng bất đẳng thức trong tam giác thì AB + AD > BD

Vậy nên AB + AC = AB + AD + DC > BD + DC

Lại theo câu a thì DB + DC > BM + CM

Vậy nên AB + AC > BM + CM

c) Chứng minh tương tự ta có các khẳng đỉnh sau:

AB + BC > MA + MC

BC + AC > MB + MA

Cộng vế với 3 bất đẳng thức ta có:

2(AB + BC + CA) > 2(MA + MB + MC)

⇒MA+MB+MC<AB+BC+CA. 

4 tháng 2 2018

a)   \(\Delta ABC\)cân tại   \(A\)

\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\)   ;     \(AB=AC\)

mà    \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\)  (kề bù)

\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)

Xét:   \(\Delta ABM\)và     \(\Delta ACN\)có:

      \(AB=AC\)(cmt)

     \(\widehat{ABM}=\widehat{ACN}\)(cmt)

     \(BM=CN\)(gt)

suy ra:    \(\Delta ABM=\Delta ACN\)(c.g.c)

\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)

\(\Rightarrow\)\(\Delta AMN\)cân tại   \(A\)