Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)
b:
ΔAHB vuông tại H có HD là đường cao
nên \(HD\cdot AB=HA\cdot HB\)
ΔAHC vuông tại H có HE là đường cao
nên \(HE\cdot AC=HA\cdot HC\)
\(HD\cdot AB+HE\cdot AC\)
\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)
\(=HA\cdot BC=AB\cdot AC\)
c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
ΔABC vuông tại A có AM là trung tuyến
nên AM=MB=MC
\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)
\(=\widehat{DHA}+\widehat{MCA}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM vuông góc DE tại I
ΔADE vuông tại A có AI là đường cao
nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)
Theo đkđb thì $AI^2=AD.AE$. Vì vậy, nếu muốn $AI^2=DE.AE$ thì $AD=DE$ (điều này vô lý vì $AD<DE$ theo tính chất cạnh huyền trong tam giác vuông.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=4,5^2+6^2=7,5^2\)
=>\(BC=\sqrt{7,5^2}=7,5\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>\(AH=\dfrac{27}{7,5}=3,6\left(cm\right)\)
b: Gọi M là trung điểm của HC
Vì ΔCEH vuông tại E
nên ΔCEH nội tiếp đường tròn đường kính HC
=>ΔCEH nội tiếp (M)
=>ME=MH=MC
Vì ME=MH
nên \(\widehat{MEH}=\widehat{MHE}\)
mà \(\widehat{MHE}=\widehat{ABC}\)(hai góc đồng vị, HE//AB)
nên \(\widehat{MEH}=\widehat{ABC}\)
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>\(\widehat{DAH}=\widehat{DEH}\)
=>\(\widehat{DEH}=\widehat{HAB}\)
\(\widehat{MED}=\widehat{MEH}+\widehat{DEH}\)
\(=\widehat{HBA}+\widehat{HAB}=90^0\)
=>DE là tiếp tuyến của (M)(ĐPCM)
c: Vì ADHE là hình chữ nhật
nên AH cắt DE tại trung điểm của mỗi đường
=>I là trung điểm chung của AH và DE
Xét ΔHAC có
I,M lần lượt là trung điểm của HA,HC
=>IM là đường trung bình của ΔHAC
=>\(IM=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
giải như nào ạ