K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Theo đkđb thì $AI^2=AD.AE$. Vì vậy, nếu muốn $AI^2=DE.AE$ thì $AD=DE$ (điều này vô lý vì $AD<DE$ theo tính chất cạnh huyền trong tam giác vuông.

 

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Hình vẽ:

14 tháng 12 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4,5^2+6^2=7,5^2\)

=>\(BC=\sqrt{7,5^2}=7,5\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot7,5=4,5\cdot6=27\)

=>\(AH=\dfrac{27}{7,5}=3,6\left(cm\right)\)

b: Gọi M là trung điểm của HC

Vì ΔCEH vuông tại E

nên ΔCEH nội tiếp đường tròn đường kính HC

=>ΔCEH nội tiếp (M)

=>ME=MH=MC

Vì ME=MH

nên \(\widehat{MEH}=\widehat{MHE}\)

mà \(\widehat{MHE}=\widehat{ABC}\)(hai góc đồng vị, HE//AB)

nên \(\widehat{MEH}=\widehat{ABC}\)

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>\(\widehat{DAH}=\widehat{DEH}\)

=>\(\widehat{DEH}=\widehat{HAB}\)

\(\widehat{MED}=\widehat{MEH}+\widehat{DEH}\)

\(=\widehat{HBA}+\widehat{HAB}=90^0\)

=>DE là tiếp tuyến của (M)(ĐPCM)

c: Vì ADHE là hình chữ nhật

nên AH cắt DE tại trung điểm của mỗi đường

=>I là trung điểm chung của AH và DE

Xét ΔHAC có

I,M lần lượt là trung điểm của HA,HC

=>IM là đường trung bình của ΔHAC

=>\(IM=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

14 tháng 12 2023

tui c.ơn nhiều