K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

+ Nếu AMB = AMC

Có: AMB + AMC = 180o ( kề bù)

=> AMB = AMC = 90o

t/g AMC = t/g AMB ( cạnh huyền - góc nhọn)

=> MC = MB ( mâu thuẫn với đề)

Do đó AMB > AMC hoặc AMB < AMC

Vẽ K là trung điểm BC

Dễ c/m AK _|_ BC

Có: CK = BK ( cách vẽ)

CM > BM (gt)

=> CM > CK > BM

AMB là góc ngoài của t/g AKM nên AMB > AKM = 90o ( hệ quả góc ngoài của t/g)

Mà: AMB + AMC = 180o ( kề bù)

Do đó, AMC < 90o < AMB

=> AMC < AMB (đpcm)

21 tháng 1 2017

Dài thế.

Xét ∆BMC ta có

BM<BC

\(\Rightarrow\)MBI > MCI

\(\Rightarrow\) MBA < MCA (1)

Xét ∆ABM và ∆ACM có

AB = AC

AM chung

MB < MC

\(\Rightarrow\) BAM < CAM (2)

Mà ta có:

AMB = 180 - (MBA + BAM) > 180 - (MCA + CAM) = AMC

Vậy AMB > AMC

31 tháng 10 2016

Ta nhận thấy rằng nếu a = 2 thì \(9\overline{abcd}\) là một số có nhiều hơn 4 chữ số (trái với giả thiết)

Vậy 0< a <2 , mà a là số tự nhiên nên a = 1 thỏa mãn đề bài.

Suy ra \(9\times\overline{1bcd}=\overline{dcb1}\)

Chú ý rằng 9d có tận cùng bằng 1 khi d = 9 (duy nhất)

Vậy ta có \(9\times\overline{1bc9}=\overline{9cb1}\)

Mặt khác, vế trái của đẳng thức chia hết cho 9 , vậy vế phải cũng chia hết cho 9.

Do vậy 9 + c + b + 1 = 10 + b + c chia hết cho 9

Vậy b+c chỉ thuộc các giá trị là 8 và 17 (các giá trị lớn hơn loại vì b+c < 19)

Với mỗi trường hợp ta chọn các giá trị của b từ 1 đến 9 , đồng thời ta cũng tìm được giá trị của c tương ứng.

Tới đây bạn tự làm nhé ^^

31 tháng 10 2016

Chị Ngọc chịu khó cày thiệt á nha, cày cả trưa luôn ^^

E lười thí mồ =)))

26 tháng 2 2018

Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

6 tháng 8 2017

. M A B C N 1 1 1 2 2 2 2 3 3 1

Trên nửa mặt phẳng bờ AC lấy điểm N sao cho \(\widehat{A}_1=\widehat{A}_2\)và AM=AN

Xét tam giác AMB và tam giác ANC có:

AB=AC(tan giác ABC cân)

\(\widehat{A}_1=\widehat{A}_2\)

AM=AN

=> tam giác AMB= tam giác ANC(c-g-c)

=>\(\widehat{M}_1=\widehat{ANC}\);BM=NC

Mà BM<MC

=>NC<MC

Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A

=>\(\widehat{M}_2=\widehat{N}_2\)(1)

Xét tam giác CNM có NC<MC

=>\(\widehat{M}_3< \widehat{N}_3\)(2)

Từ (1),(2)

=>\(\widehat{M}_2+\widehat{M}_3< \widehat{N}_2+\widehat{N}_3\)

=>\(\widehat{AMC}< \widehat{ANC}\)=>\(\widehat{ANC}>\widehat{AMC}\)

=>\(\widehat{AMB}>\widehat{AMC}\)(\(\widehat{ANC}=\widehat{AMB}\))

Trên nửa mặt phẳng bờ AC lấy điểm N sao cho A^1=A^2và AM=AN

Xét tam giác AMB và tam giác ANC có:

AB=AC(tan giác ABC cân)

A^1=A^2

AM=AN

=> tam giác AMB= tam giác ANC(c-g-c)

=>M^1=ANC^;BM=NC

Mà BM<MC

=>NC<MC

Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A

=>M^2=N^2(1)

Xét tam giác CNM có NC<MC

=>M^3<N^3(2)

Từ (1),(2)

=>M^2+M^3<N^2+N^3

=>AMC^<ANC^=>ANC^>AMC^

=>AMB^>AMC^(ANC^=AMB^)

26 tháng 2 2018

Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

26 tháng 9 2016

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\Rightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x-7=0\\\left(x-7\right)^{10}=1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x-7=0\\x-7=1\\x-7=-1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=7\\x=8\\x=6\end{array}\right.\)

Vậy \(\left[\begin{array}{nghiempt}x=7\\x=8\\x=6\end{array}\right.\) thỏa mãn đề bài

26 tháng 9 2016

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\Rightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{x+10}\right]=0\)

\(\Rightarrow x-7=0\) hoặc \(1-\left(x-7\right)^{10}=0\)

+) \(x-7=0\Rightarrow x=7\)

+) \(1-\left(x-7\right)^{10}=0\)

\(\Rightarrow x-7=\pm1\)

\(x-7=1\Rightarrow x=8\)

\(x-7=-1\Rightarrow x=6\)

Vậy \(x\in\left\{7;8;6\right\}\)

26 tháng 2 2018

Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

12 tháng 1

U

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Xét \(\Delta AMB\) và \(\Delta AMC\).có:

AB = AC ( do tam giác ABC cân tại A )

MB = MC ( do M là trung điểm BC )

AM là cạnh chung

=>\(\Delta AMB\) =\(\Delta AMC\) (c.c.c)

=>\(\widehat {ABC}\)=\(\widehat {ACB}\)( 2 góc tương ứng)