Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy rằng nếu a = 2 thì \(9\overline{abcd}\) là một số có nhiều hơn 4 chữ số (trái với giả thiết)
Vậy 0< a <2 , mà a là số tự nhiên nên a = 1 thỏa mãn đề bài.
Suy ra \(9\times\overline{1bcd}=\overline{dcb1}\)
Chú ý rằng 9d có tận cùng bằng 1 khi d = 9 (duy nhất)
Vậy ta có \(9\times\overline{1bc9}=\overline{9cb1}\)
Mặt khác, vế trái của đẳng thức chia hết cho 9 , vậy vế phải cũng chia hết cho 9.
Do vậy 9 + c + b + 1 = 10 + b + c chia hết cho 9
Vậy b+c chỉ thuộc các giá trị là 8 và 17 (các giá trị lớn hơn loại vì b+c < 19)
Với mỗi trường hợp ta chọn các giá trị của b từ 1 đến 9 , đồng thời ta cũng tìm được giá trị của c tương ứng.
Tới đây bạn tự làm nhé ^^
Chị Ngọc chịu khó cày thiệt á nha, cày cả trưa luôn ^^
E lười thí mồ =)))
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Trên nửa mặt phẳng bờ AC lấy điểm N sao cho \(\widehat{A}_1=\widehat{A}_2\)và AM=AN
Xét tam giác AMB và tam giác ANC có:
AB=AC(tan giác ABC cân)
\(\widehat{A}_1=\widehat{A}_2\)
AM=AN
=> tam giác AMB= tam giác ANC(c-g-c)
=>\(\widehat{M}_1=\widehat{ANC}\);BM=NC
Mà BM<MC
=>NC<MC
Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A
=>\(\widehat{M}_2=\widehat{N}_2\)(1)
Xét tam giác CNM có NC<MC
=>\(\widehat{M}_3< \widehat{N}_3\)(2)
Từ (1),(2)
=>\(\widehat{M}_2+\widehat{M}_3< \widehat{N}_2+\widehat{N}_3\)
=>\(\widehat{AMC}< \widehat{ANC}\)=>\(\widehat{ANC}>\widehat{AMC}\)
=>\(\widehat{AMB}>\widehat{AMC}\)(\(\widehat{ANC}=\widehat{AMB}\))
Trên nửa mặt phẳng bờ AC lấy điểm N sao cho và AM=AN
Xét tam giác AMB và tam giác ANC có:
AB=AC(tan giác ABC cân)
AM=AN
=> tam giác AMB= tam giác ANC(c-g-c)
=>;BM=NC
Mà BM<MC
=>NC<MC
Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A
=>(1)
Xét tam giác CNM có NC<MC
=>(2)
Từ (1),(2)
=>
=>=>
=>()
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Rightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x-7=0\\\left(x-7\right)^{10}=1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x-7=0\\x-7=1\\x-7=-1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=7\\x=8\\x=6\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=7\\x=8\\x=6\end{array}\right.\) thỏa mãn đề bài
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Rightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{x+10}\right]=0\)
\(\Rightarrow x-7=0\) hoặc \(1-\left(x-7\right)^{10}=0\)
+) \(x-7=0\Rightarrow x=7\)
+) \(1-\left(x-7\right)^{10}=0\)
\(\Rightarrow x-7=\pm1\)
+ \(x-7=1\Rightarrow x=8\)
+ \(x-7=-1\Rightarrow x=6\)
Vậy \(x\in\left\{7;8;6\right\}\)
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Xét \(\Delta AMB\) và \(\Delta AMC\).có:
AB = AC ( do tam giác ABC cân tại A )
MB = MC ( do M là trung điểm BC )
AM là cạnh chung
=>\(\Delta AMB\) =\(\Delta AMC\) (c.c.c)
=>\(\widehat {ABC}\)=\(\widehat {ACB}\)( 2 góc tương ứng)
+ Nếu AMB = AMC
Có: AMB + AMC = 180o ( kề bù)
=> AMB = AMC = 90o
t/g AMC = t/g AMB ( cạnh huyền - góc nhọn)
=> MC = MB ( mâu thuẫn với đề)
Do đó AMB > AMC hoặc AMB < AMC
Vẽ K là trung điểm BC
Dễ c/m AK _|_ BC
Có: CK = BK ( cách vẽ)
CM > BM (gt)
=> CM > CK > BM
AMB là góc ngoài của t/g AKM nên AMB > AKM = 90o ( hệ quả góc ngoài của t/g)
Mà: AMB + AMC = 180o ( kề bù)
Do đó, AMC < 90o < AMB
=> AMC < AMB (đpcm)
Dài thế.
Xét ∆BMC ta có
BM<BC
\(\Rightarrow\)MBI > MCI
\(\Rightarrow\) MBA < MCA (1)
Xét ∆ABM và ∆ACM có
AB = AC
AM chung
MB < MC
\(\Rightarrow\) BAM < CAM (2)
Mà ta có:
AMB = 180 - (MBA + BAM) > 180 - (MCA + CAM) = AMC
Vậy AMB > AMC