Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 góc đáy ABC = ACB = (180 - 108) : 2 = 36 ( gt)
Hạ đường cao AH; vì ABC là t.g cân tại A => AH là trung tuyến => HB = HC => BC = 2HC.
Trong \(\Delta\) vuông AHC có: HC/AC =cos36o
=>2HC/AC=cos36o
<=> BC/AC = 2cos36o
Xin phép ko vẽ hình nha.
Từ giả thiết suy ra 2 góc đáy ABC = ACB = (180 - 108) : 2 = 36o
Hạ đường cao AH; vì ABC là t.g cân tại A => AH là trung tuyến => HB = HC => BC = 2HC.
Trong t.g vuông AHC có: HC/AC =cos36o <=> 2HC/AC = 2cos36o <=> BC/AC = 2cos36o
Tính được góc ABC = góc ACB = 36 độ
Kẻ CH vuông góc với AB
Có : sin HCB = HC/BC
=> HC/BC = sin 36 độ
=> BC = sin 36 độ . HC
Có : góc HAC = 180 độ - góc CAB = 180 độ - 108 độ = 72 độ
=> HC/AC = sin HAC = sin 72 độ
=> AC = sin 72 độ . HC
=> BC/AC = sin 36 độ . HC / sin 72 độ . HC = sin 36 độ / sin 72 độ xấp xỉ = 0,618
Tk mk nha
Theo tính chất tia phân giác của góc ta có:
Do tam giác ABC cân tại A nên AB = AC nên:
Suy ra : DB = DC.
Mà DB + DC = BC nên:
Chọn đáp án C
a) Xét tam giác ABC có:
BD là tia phân giác \(\widehat{BAC}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{15}{20}=\dfrac{3}{4}\)(tính chất)
\(\Rightarrow\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{BC}{7}=\dfrac{25}{7}\)(tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\left\{{}\begin{matrix}DB=\dfrac{25.3}{7}=\dfrac{75}{7}\left(cm\right)\\DC=\dfrac{25.4}{7}=\dfrac{100}{7}\left(cm\right)\end{matrix}\right.\)
b) Kẻ đường cao AH của tam giác ABC
\(\Rightarrow\dfrac{S_{ACD}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.AH.DC}{\dfrac{1}{2}.AH.BC}=\dfrac{DC}{BC}=\dfrac{100}{7}:25=\dfrac{4}{7}\)
a: Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{15}=\dfrac{CD}{20}\)
mà BD+CD=25cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{15}=\dfrac{CD}{20}=\dfrac{25}{35}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{75}{7}cm;CD=\dfrac{100}{7}cm\)