K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Sai để bạn ơi tam giác làm j có góc =180 độ

7 tháng 2 2018

TAM GIÁC NÀY VỪA ĐƯỢC PHÁT HIỆN NĂM \(2018\)

21 tháng 2 2018

Tính được góc ABC = góc ACB = 36 độ

Kẻ CH vuông góc với AB

Có : sin HCB = HC/BC

=> HC/BC = sin 36 độ

=> BC = sin 36 độ . HC

Có : góc HAC = 180 độ - góc CAB = 180 độ - 108 độ = 72 độ

=> HC/AC = sin HAC = sin 72 độ

=> AC = sin 72 độ . HC

=> BC/AC = sin 36 độ . HC / sin 72 độ . HC = sin 36 độ / sin 72 độ  xấp xỉ = 0,618

Tk mk nha

19 tháng 1 2020

2 góc đáy ABC = ACB = (180 - 108) : 2 = 36 ( gt)

Hạ đường cao AH; vì ABC là t.g cân tại A => AH là trung tuyến => HB = HC => BC = 2HC.

Trong \(\Delta\) vuông AHC có: HC/AC =cos36o

=>2HC/AC=cos36o

 <=> BC/AC = 2cos36o

19 tháng 1 2020

mình mới học lớp 8

20 tháng 4 2016

Xin phép ko vẽ hình nha.

Từ giả thiết suy ra 2 góc đáy ABC = ACB = (180 - 108) : 2 = 36o

Hạ đường cao AH; vì ABC là t.g cân tại A => AH là trung tuyến => HB = HC => BC = 2HC.

Trong t.g vuông AHC có: HC/AC =cos36o <=> 2HC/AC = 2cos36o <=> BC/AC = 2cos36o

26 tháng 3 2019

lớp 8 mik chưa học cos gì gì đó mà bạn

p

13 tháng 9 2023

a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 10 - BD\)

Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{10 - BD}} = \frac{6}{8} \Leftrightarrow 8BD = 6.\left( {10 - BD} \right) \Rightarrow 8BD = 60 - 6BD\)

\( \Leftrightarrow 8BD + 6BD = 60 \Leftrightarrow 14BD = 60 \Rightarrow BD = \frac{{60}}{{14}} = \frac{{30}}{7}\)

\( \Rightarrow DC = 10 - \frac{{30}}{7} = \frac{{40}}{7}\)

Vậy \(BD = \frac{{30}}{7}cm;DC = \frac{{40}}{7}cm\).

b) Kẻ \(AE \bot BC \Rightarrow AE\) là đường cao của tam giác \(ABC\).

Vì \(AE \bot BC \Rightarrow AE \bot BD \Rightarrow AE\)là đường cao của tam giác \(ADB\)

Diện tích tam giác \(ADB\) là:

\({S_{ADB}} = \frac{1}{2}BD.AE\)

Vì \(AE \bot BC \Rightarrow AE \bot DC \Rightarrow AE\)là đường cao của tam giác \(ADC\)

Diện tích tam giác \(ADC\) là:

\({S_{ADC}} = \frac{1}{2}DC.AE\)

Ta có: \(\frac{{{S_{ADB}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}AE.BD}}{{\frac{1}{2}AE.CD}} = \frac{{BD}}{{DC}} = \frac{{\frac{{30}}{7}}}{{\frac{{40}}{7}}} = \frac{3}{4}\).

Vậy tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\) là \(\frac{3}{4}\).