\(\widehat{B}\) , \(\widehat{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E M N 1 1 2 2 3 3

Bài làm

a) Vì tam giác ABC cân tại A

=> Góc ABC = góc ACB ( 2 góc ở đáy )

Xét tam giác ABC ta có:

A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )

hay ABC + ACB = 180- A

=> 2ABC = 180o - A      ( 1 )   

Ta có: AB + BD = AD 

           AC + CE = AE

Mà AB = AC ( giả thiết ) 

      BD = CE ( giả thiết )

=> AD = AE

=> Tam giác ADE cân tại A

=> Góc D = góc E

Xét tam giác ADE 

Ta có: A + D + E = 180o 

hay D + E = 180o - A

=> 2D = 180o - A       ( 2 ) 

Từ ( 1 ) và( 2 ) => 2D = 2ABC 

                     => D = ABC

Mà góc D và góc ABC ở vị trí đồng vị

=> DE // BC ( đpcm )

b) Ta có: B1 = B2 ( 2 góc đối đỉnh )

               C1 = C2 ( 2 góc đối đỉnh )

Mà B1 = C1 ( tam giác ABC cân tại A )

=> B2 = C2

Xét tam giác MBD và tam giác NCE

có: Góc BMD = góc CNE = 90o 

cạnh huyền: BD = CE ( giả thiết )

Góc nhọn: B2 = C2 ( chứng minh trên )

=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )

=> MB = NC. ( 2 cạnh tương ứng )

Ta có: MB + BC = MC

           NC + BC = NB

Mà MB = NC ( chứng minh trên )

Cạnh BC chung

=> MC = NB

Xét tam giác ACM và tam giác ABN 

Có: AB = AC ( giả thiết )

       B1 = C1 ( Tam giác ABC cân tại A )

       MC = NB ( chứng minh trên )

=> Tam giác ACM = tam giác ABN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

=> Tam giác AMN cân tại A ( đpcm )

~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~

16 tháng 2 2019

a) Vì AB=AC mà BD=CE 

Suy ra :  AB+BD=AC+CE

Suy ra             AD= AE

Suy ra          tam giác DAE cân tại A

Suy ra           \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)

Ta có          tam giác ABC cân tại A

suy ra          \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)

Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)

mà hai góc ở vị trí đồng vị .  Suy ra  \(DE//BC\)

Bài làm

a) Xét ∆ABC vuông tại B có:

^BAC + ^C = 90°

Hay ^BAC + 30° = 90°

=> ^BAC = 60° 

Vì AD là phân giác của góc BAC.

=> ^DAC = 60°/2 = 30°

Xét tam giác ADC có:

^DAC + ^ACD + ^ADC = 180°

Hay 30° + 30° + ^ADC = 180°

=> ^ADC = 180° - 30° - 30°

=> ^ADC = 120°

b) Xét tam giác ABD và tam giác AED có:

AB = AE ( gt )

^BAD = ^EAD ( Do AD phân giác )

Cạnh AD chung.

=> ∆ABD = ∆AED ( c.g.c )

c) Vì ∆ABD = ∆AED ( cmt )

=> ^ABD = ^AED = 90°

=> DE vuông góc với AC tại E                (1)

Ta có: ^DAC = ^DCA = 30°

=> ∆DAC cân tại D.

=> AD = DC

Xét tam giác DEA và tam giác DEC có:

Góc vuông: ^DEA = ^DEC ( = 90° )

Cạnh huyền AD = DC ( cmt )

Góc nhọn: ^DAC = ^DCA ( cmt )

=> ∆DEA = ∆DEC ( g.c.g )

=> AE = EC 

=> E là trung điểm của AC.                       (2)

Từ (1) và (2) => DE là trung trực của AC ( đpcm )

Bài làm

a) Xét ∆ABM và ∆DBM có:

AB = BD ( cmt )

^ABM = ^DBM ( do BM phân giác )

Cạnh AM chung.

=> ∆ABM = ∆DBM ( c.g.c )

b) Vì ∆ABM = ∆DBM ( cmt )

=> ^BAM = ^BDM 

Mà ^BAM = 90°

=> ^BDM = 90°

=> MD vuông góc với BC.

d) Xét ∆BAC và ∆BDE có:

^BAC = ^BDE ( = 90° )

AB = BD ( gt )

^ABC chung 

=> ∆BAC = ∆BDE ( g.c.g )

=> BE = BC

=> ∆BEC cân tại B

=> ^BEC = ( 180° - ^ABC )/2.                  (1)

Ta có: BA = BD ( gt )

=> ∆BAD cân tại B

=> ^BAD = ( 180° - ^ABC )/2.             (2)

Từ (1) và (2) => ^BEC = ^BAD 

Mà hai góc này ở vị trí đồng vị

=> AD // CE ( đpcm )