Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBED có
BA là đường cao
BA là đường trung tuyến
Do đo:ΔBED can tại B
=>\(\widehat{BED}=\widehat{BDE}\)
Ta có: E nằm trên đường trung trực của BC
nên EB=EC
=>ΔEBC cân tại E
=>ΔEBC cân tại E
=>\(\widehat{BED}=2\cdot\widehat{ACB}=\widehat{BDE}\)
d: Xét ΔBKC có
CA là đường cao
KI là đường cao
CA cắt KI tại E
Do đó: E là trực tâm
=>BE vuông góc với KC
Bạn tự vẽ hình nhé. Bài này khá dài nên mình trình bày vắn tắt, có gì không hiểu bạn hỏi lại nhé.
a, Tam giác BDE có BA vuông góc với DE , AD = AE
=> BA vừa là đường cao vừa là trung tuyến
=> Tam giác BDE cân tại B
=> góc BDE = góc BED (1)
Vì E thuộc trung trực của BD nên EB= EC ( t/c đường trung trực)
=> Tam giác EBC cân tại E
=> Góc EBC = ECB
Mà góc BED = góc EBC + ECB ( góc ngoài tam giác)
=> Góc BED = 2 góc ECB = 2 góc ACB (2)
Từ (1) và (2) => Góc BDE = 2 góc ACB
b, Vì I là trung điểm của BC nên AI = IC
=>Tam giác ACI cân tại I
=> Góc IAC = ICA = ACB
Mà IAC = DAM (đối đỉnh)
=> DAM = ACB
Theo ý a: BDE = 2 ACB = 2 DAM
Mà BDE = DAM + AMD ( góc ngoài )
=> 2 ACB = DAM + AMD
=> DAM + DAM = DAM + AMD
=> DAM = AMD
=> Tg AMD cân tại D
=> MD = AD
Tiếp ý b:
Vì MD = AD (cmt)
=> MD + DB = EA + DB ( Vì AD = EA)
=> MB = EA + BE ( VÌ BE = BD do tam giác BED cân )
=> MB = EA + EC ( Vì BE = EC do tam giác EBC cân )
=> MB = AC ( đpcm )
c, Kẻ hình ra thấy DE < BC mà ??!
d, Xét tam giác BCK có CA và KI là 2 đường cao
Mà AC giao với KI tại E
=> BE là đường cao thứ 3
=> BE vuông góc với CK
e, AI vuông góc với BE
<=> A thuộc đường trung trực của BC
<=> AB = BC
<=> Tam giác ABC vuông cân tại A
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau