K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

a,Do \(\Delta ABC\) cân \(\Rightarrow\widehat{B}=\widehat{C}\)

\(\Rightarrow\dfrac{1}{2}\widehat{B}=\dfrac{1}{2}\widehat{C}\\ \Rightarrow\left\{{}\begin{matrix}\widehat{IBA}=\widehat{ICA}\\\widehat{IBC}=\widehat{ICB}\end{matrix}\right.\)

\(\widehat{IBC}=\widehat{ICB}\\ \Rightarrow\Delta BIC\text{ cân}\\ \Rightarrow IB=IC\)

b,

Xét \(\Delta AIB\)\(\Delta AIC\):

\(IB=IC\left(cmt\right)\\ \widehat{IBA}=\widehat{ICA}\left(cmt\right)\\ BA=CA\left(gt\right)\)

\(\Rightarrow\)\(\Delta AIB=\)\(\Delta AIC\)

c,

Kẻ tia phân giác của \(\widehat{A}\),

\(I\) là giao điểm của hai đường phân giác thì đường phân giác thứ ba sẽ đi qua điểm \(I\)

\(\Rightarrow AI\) là đường phân giác từ đỉnh A

Trong tan giác cân, đường phân giác ứng với cạnh đáy sẽ đồng thời là đường trung tuyến ứng với cạnh đáy.

\(\Rightarrow AI\) đi qua trung điểm của \(BC\)

9 tháng 8 2017

d,

\(\widehat{A}=50^o\\ \Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-50^o=130^o\\ \widehat{B}=\widehat{C}=\dfrac{130^o}{2}=65^o\\ \Rightarrow\widehat{IBC}=\widehat{ICB}=\dfrac{65^o}{2}\\ \Rightarrow\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\left(\dfrac{65^o}{2}+\dfrac{65^o}{2}\right)=180^o-65^o=115^o\)

Vậy \(\widehat{BIC}=115^o\)

13 tháng 10 2019

B K E C H A D M

a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành

b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE

Để DE đi qua A tức là D;E;A thằng hàng

mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC 

hình bình hành có 2 đường chéo vuông góc là hình thoi

c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180

13 tháng 10 2019

Mượn hình của bạn Manh nhé!

a) Ta có: DB // CK ( \(\perp\)AB)

=> DB // CE   (1)

BH // DC ( \(\perp\) AC )

=> DC // BE  (2)

Từ (1) ; (2) => DBEC là hình bình hành.

b) +) Theo câu a) DBEC là hình bình hành 

=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm BC => M là trung điểm DE.

+) CK; BH là hai đường cao của \(\Delta ABC\)  và CK ; BH cắt nhau tại E.

=> E là trực tâm của \(\Delta ABC\)

=> AE là đường cao hạ từ A. (3)

Theo giả thiết DE qua A  mà DE cắt BC tại M là trung điểm cạnh  BC

=> AE qua trung điểm của cạnh BC

=>  AE là đường trung tuyến  của \(\Delta ABC\) (4)

Từ (3); (4) => \(\Delta ABC\) cân tại A

c) Em tham khảo bài làm bạn Manh.

27 tháng 6 2018

Hình tự vẽ nhá 

Vì tam giác ABC cân tại A nên:

\(\widehat{B}=\widehat{C}\)

Mà \(\widehat{B}=\widehat{DME}\)

Suy ra: \(\widehat{C}=\widehat{DME}\)

Mặt khác: \(\widehat{BME}=\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{C}\)(góc ngoài của tam giác MEC)

Suy ra: \(\widehat{BMD}=\widehat{MEC}\)

Xét tam giác BMD và tam giác CEM có:

\(\widehat{B}=\widehat{C}\)(gt)

+\(\widehat{BMD}=\widehat{MEC}\)(cmt)

Do đó: \(\Delta BMD~\Delta CEM\)(g.g)

Suy ra: \(\frac{BM}{CE}=\frac{BD}{CM}\Leftrightarrow BM\cdot CM=CE\cdot BD\)

Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi

Vậy BD.CE không đổi

1 tháng 12 2018

ý c nhé, a và b dễ tự làm nhé:

https://vn.answers.yahoo.com/question/index?qid=20110323013140AAJ5GpF

28 tháng 10 2017

ae trả lời hộ mình cái

28 tháng 10 2017

vẽ hình đi làm cho