K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

a,Do \(\Delta ABC\) cân \(\Rightarrow\widehat{B}=\widehat{C}\)

\(\Rightarrow\dfrac{1}{2}\widehat{B}=\dfrac{1}{2}\widehat{C}\\ \Rightarrow\left\{{}\begin{matrix}\widehat{IBA}=\widehat{ICA}\\\widehat{IBC}=\widehat{ICB}\end{matrix}\right.\)

\(\widehat{IBC}=\widehat{ICB}\\ \Rightarrow\Delta BIC\text{ cân}\\ \Rightarrow IB=IC\)

b,

Xét \(\Delta AIB\)\(\Delta AIC\):

\(IB=IC\left(cmt\right)\\ \widehat{IBA}=\widehat{ICA}\left(cmt\right)\\ BA=CA\left(gt\right)\)

\(\Rightarrow\)\(\Delta AIB=\)\(\Delta AIC\)

c,

Kẻ tia phân giác của \(\widehat{A}\),

\(I\) là giao điểm của hai đường phân giác thì đường phân giác thứ ba sẽ đi qua điểm \(I\)

\(\Rightarrow AI\) là đường phân giác từ đỉnh A

Trong tan giác cân, đường phân giác ứng với cạnh đáy sẽ đồng thời là đường trung tuyến ứng với cạnh đáy.

\(\Rightarrow AI\) đi qua trung điểm của \(BC\)

9 tháng 8 2017

d,

\(\widehat{A}=50^o\\ \Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-50^o=130^o\\ \widehat{B}=\widehat{C}=\dfrac{130^o}{2}=65^o\\ \Rightarrow\widehat{IBC}=\widehat{ICB}=\dfrac{65^o}{2}\\ \Rightarrow\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\left(\dfrac{65^o}{2}+\dfrac{65^o}{2}\right)=180^o-65^o=115^o\)

Vậy \(\widehat{BIC}=115^o\)

13 tháng 10 2019

B K E C H A D M

a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành

b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE

Để DE đi qua A tức là D;E;A thằng hàng

mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC 

hình bình hành có 2 đường chéo vuông góc là hình thoi

c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180

13 tháng 10 2019

Mượn hình của bạn Manh nhé!

a) Ta có: DB // CK ( \(\perp\)AB)

=> DB // CE   (1)

BH // DC ( \(\perp\) AC )

=> DC // BE  (2)

Từ (1) ; (2) => DBEC là hình bình hành.

b) +) Theo câu a) DBEC là hình bình hành 

=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm BC => M là trung điểm DE.

+) CK; BH là hai đường cao của \(\Delta ABC\)  và CK ; BH cắt nhau tại E.

=> E là trực tâm của \(\Delta ABC\)

=> AE là đường cao hạ từ A. (3)

Theo giả thiết DE qua A  mà DE cắt BC tại M là trung điểm cạnh  BC

=> AE qua trung điểm của cạnh BC

=>  AE là đường trung tuyến  của \(\Delta ABC\) (4)

Từ (3); (4) => \(\Delta ABC\) cân tại A

c) Em tham khảo bài làm bạn Manh.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{DA}{6}=\dfrac{DC}{10}\)

Ta có: D nằm giữa A và C(gt)

nên DA+DC=AC

hay DA+DC=8(cm)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{DA}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DA=6\cdot\dfrac{1}{2}=3\left(cm\right)\\DC=10\cdot\dfrac{1}{2}=5\left(cm\right)\end{matrix}\right.\)

Vậy: DA=3cm; DC=5cm

28 tháng 12 2017

Đáp án cần chọn là: D

Xét tam giác ABC có: