K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

A B C P(1,2;5,6)

Điểm P có tọa độ \(\left(\frac{5}{6};\frac{28}{5}\right)\). Đặt \(\widehat{ABC}=\alpha\). Do tam giác ABC cân tại A nên \(\alpha\in\left(0;\frac{\pi}{2}\right)\) do đó \(\alpha=\left(\widehat{AB,BC}\right)=\left(\widehat{BC,CA}\right)\)

và \(\cos\alpha=\frac{\left|4.1+\left(-1\right).\left(-2\right)\right|}{\sqrt{4^2+\left(-1\right)^2}.\sqrt{1^2+\left(-2\right)^2}}=\frac{6}{\sqrt{5.17}}\)

Do đó bài toán trở thành viết phương trình đường thẳng đi qua \(P\left(\frac{6}{5};\frac{28}{7}\right)\) không song song với AB, tạo với BC góc \(\alpha\) mà \(\cos\alpha=\frac{6}{\sqrt{5.17}}\) (1)

Đường thẳng AC cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right)\) với \(a^2+b^2\ne0\) và \(a\ne-4b\) (do AC không cùng phương với AB). Từ đó và (1) suy ra :

\(\frac{6}{\sqrt{5.17}}=\frac{\left|a-2b\right|}{\sqrt{5}.\sqrt{a^2+b^2}}\Leftrightarrow6\sqrt{a^2+b^2}=\sqrt{17}.\left|a-2b\right|\)

                              \(\Leftrightarrow19a^2+68ab-32b^2=0\)

                              \(\Leftrightarrow\left(a+4b\right)\left(19a-8b\right)=0\)

                              \(\Leftrightarrow19a=8b\) (do \(a\ne-4b\) (2)

Từ (2) và do \(a^2+b^2\ne0\), chọn a=40, b=95 được phương trình đường thẳng AC cần tìm là \(40\left(x-\frac{6}{5}\right)+95\left(y-\frac{28}{5}\right)=0\) hay \(8x+19y-116=0\)

NV
5 tháng 3 2023

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y-2=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(3;1\right)\)

\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_G\\y_A+y_B+y_C=3y_G\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B+x_C=6\\y_B+y_C=5\end{matrix}\right.\) (1)

B thuộc AB nên: \(x_B-y_B=2\Rightarrow x_B=y_B+2\)

C thuộc AC nên: \(x_C+2y_C-5=0\Rightarrow x_C=-2y_C+5\)

Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}y_B+2-2y_C+5=6\\y_B+y_C=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_B=3\Rightarrow x_B=5\\y_C=2\Rightarrow x_C=1\end{matrix}\right.\)

Phương trình BC: \(\dfrac{x-5}{1-5}=\dfrac{y-3}{2-3}\Leftrightarrow x-4y+7=0\)

9 tháng 5 2022

 

 

9 tháng 5 2022
10 tháng 5 2016

2x - 7y - 5 = 0 và 3x + 4y - 22 = 0

10 tháng 5 2016

Hoc24 lại cứ thách đố học sinh hiha

MAX hại não với một học sinh lớp 7.

a: BC: x+y+4=0

=>AH: -x+y+c=0

Thay x=-1 và y=-2 vào AH, ta được:

c+1-2=0

=>c=1

=>-x+y+1=0

=>x-y-1=0

b: BC: x+y+4=0

=>B(x;-x-4)

Tọa độ M là:

xM=(x-1)/2 và yM=(-x-4-2)/2=(-x-6)/2

BC: x+y+4=0

=>MN: x+y+c=0

Thay xM=(x-1)/2 và yM=(-x-6)/2 vào MN, ta được:

\(\dfrac{x-1}{2}+\dfrac{-x-6}{2}+c=0\)

=>c+(1/2x-1/2-1/2x-3)=0

=>c=7/2

=>x+y+7/2=0

NM
31 tháng 3 2022

ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)

Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)

Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC

khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)

Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)

NV
21 tháng 3 2021

\(cosB=\dfrac{\left|1.2+\left(-7\right).1\right|}{\sqrt{1^2+\left(-7\right)^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)

Gọi vtpt của AC có tọa độ \(\left(a;b\right)\)

\(\Rightarrow cosC=cosB=\dfrac{1}{\sqrt{10}}=\dfrac{\left|2a+b\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow2\left(2a+b\right)^2=a^2+b^2\)

\(\Leftrightarrow7a^2+8ab+b^2=0\Leftrightarrow\left(a+b\right)\left(7a+b\right)=0\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-1\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;-7\right)\end{matrix}\right.\)

(Trường hợp \(\left(a;b\right)=\left(1-;7\right)\) loại do khi đó AC song song AB, vô lý)

\(\Rightarrow\) Phương trình AC: \(1\left(x-4\right)-1\left(y-0\right)=0\)

20 tháng 2 2022

cho em hỏi vtpt là gì vậy ?

 

 

17 tháng 11 2019

Trực tâm H là giao điểm của BH và AH ⇒ tọa độ H là nghiệm của hệ:

Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

A là giao điểm của AB và AH nên tọa độ A là nghiệm của hệ phương trình:

Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

B là giao điểm BH và AB nên tọa độ điểm B là nghiệm của hệ:

Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

+ AC ⊥ HB, mà HB có một vtpt là (5; -4)⇒ AC nhận (4; 5) là một vtpt

AC đi qua Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

⇒ Phương trình đường thẳng AC: Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10 hay 4x + 5y – 20 = 0.

+ CH ⊥ AB, AB có một vtpt là (4; 1) ⇒ CH nhận (1; -4) là một vtpt

CH đi qua Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

⇒ Phương trình đường thẳng CH: Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10 hay CH: 3x – 12y - 1 = 0.

+ BC ⊥ AH , mà AH nhận (2; 2) là một vtpt

⇒ BC nhận (1; -1) là một vtpt

BC đi qua B(3; 0)

⇒ Phương trình đường thẳng BC: 1(x - 3) – 1(y – 0) = 0 hay x – y – 3 = 0.

NV
8 tháng 3 2023

Gọi G là trọng tâm tam giác \(\Rightarrow\) tọa độ G là nghiệm:

\(\left\{{}\begin{matrix}x+7y-10=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{2}{3};\dfrac{4}{3}\right)\)

Gọi D là trung điểm BC, theo tính chất trọng tâm:

\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AD}\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}\left(x_D-1\right)=-\dfrac{1}{3}\\\dfrac{2}{3}\left(y_D-3\right)=-\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow D\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)

Do B thuộc BM nên tọa độ có dạng: \(B\left(10-7b;b\right)\)

Do D là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_D-x_B=7b-9\\y_C=2y_D-y_B=1-b\end{matrix}\right.\) \(\Rightarrow C\left(7b-9;1-b\right)\)

Do C thuộc CN nên:

\(7b-9-2\left(1-b\right)+2=0\Rightarrow b=1\)

\(\Rightarrow B\left(3;1\right)\)

Biết tọa độ 2 điểm B; D thuộc BC, bây giờ có thể dễ dàng viết pt BC