\(d_1:5x+3y-8=0\)

\(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

A B C D M G d2 d1

Gọi G là giao điểm của 2 đường thẳng \(d_1,d_2\). Khi đó G(1;1) và G là trọng tâm của tam giác ABC. Gọi D là điểm đối xứng với A qua G suy ra tứ giác BGCD là một hình bình hành và D(-4;-1)

Gọi b là đường thẳng đi qua D và song song với \(d_1\)

Khi đó b có phương trình \(5\left(x+4\right)+3\left(y+1\right)=0\)

hay \(5x+3y+23=0\)

đường thẳng b cắt \(d_2\) tại điểm C có tọa độ là nghiệm của hệ :

\(\begin{cases}5x+3y+23=0\\3x+8y-11=4\end{cases}\)

Giải hệ thu được (x;y)=(-7;4)

Do đó C(-7;4)

Tương tự c là đường thẳng đi qua D và song song với \(d_2\) cắt \(d_1\) tại B(4;-4)

Khi đó \(\overrightarrow{BC}=\left(-11;8\right)\)

Suy ra BC có vec tơ pháp tuyến \(\overrightarrow{n}=\left(8;11\right)\), do đó có phương trình \(8\left(x-4\right)+11\left(y+4\right)=0\)  hay \(8x+11y+12=0\)

1 tháng 4 2016

A B C d2 d1

Vì \(d_1\) là đường cao kẻ từ B nên đường thẳng AC vuông góc với  \(d_1\) 

Đường thẳng  \(d_1\)  có vec tơ pháp tuyến \(\overrightarrow{n}=\left(5;3\right)\) do đó nhận \(\overrightarrow{u}=\left(3;-5\right)\) làm vec tơ chỉ phương.

Vậy đường thẳng AC đi qua A(-4;5), với vec tơ pháp tuyến \(\overrightarrow{u}=\left(3;-5\right)\), do dó có phương trình \(3\left(x+4\right)-5\left(y-5\right)=0\) hay \(3x-5y+37=0\)

Đường thẳng AC cắt \(d_2\) tại C có tọa độ của hệ :

\(\begin{cases}3x+8y+11=0\\3x-5y+37=0\end{cases}\)

Giải hệ thu được (x;y)=(-9;2) do đó C(-9;2)

Tương tự như trên cũng được phương trình tổng quát AB là \(8x-3y+47=0\) và \(B\left(-3;\frac{23}{3}\right)\)

Từ đó \(\overrightarrow{BC}=\left(-6;-\frac{17}{3}\right)=-\frac{1}{3}\left(18;17\right)\)

Suy ra đường thẳng  BC có vec tơ chỉ phương \(\overrightarrow{u}=\left(18;17\right)\) do đó nhận vec tơ \(\overrightarrow{n}=\left(17;-18\right)\) làm vec tơ pháp tuyến

Vậy BC có phương trình tổng quát \(17\left(x+9\right)-18\left(y-2\right)=0\) hay \(17x-18y+189=0\)

 

30 tháng 3 2017

Áp dụng công thức cos =

ta có cos =

=> cos = = = => = 450

Vậy số đo góc giữa hai đường thẳng \(d_1\)\(d_2\) là 45 độ.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

Ta có : \(A\in d_1\Rightarrow A\left(a;\frac{2a+5}{3}\right)\) \(B\in d_2\Rightarrow B\left(b;\frac{1-3b}{4}\right)\)

\(M\left(-2;1\right)\) là trung điểm của AB . Ta có :

\(\left\{{}\begin{matrix}a+b=-4\\\frac{2a+5}{3}+\frac{1-3b}{4}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{35}{17}\\b=-\frac{33}{17}\end{matrix}\right.\)

Vậy \(A\left(-\frac{35}{17};\frac{5}{17}\right),B\left(-\frac{33}{17};\frac{29}{17}\right)\)

2 tháng 4 2016

Xét điểm \(B\left(3+t;-2t\right)\in d_2\). Lấy điểm A sao cho M(1;2) là trung điểm của AB. Khi đó \(A\left(1-t;4+2t\right)\) và 

\(A\in d_1\Leftrightarrow\frac{1-t-3}{3}=\frac{4+2t}{-1}\Leftrightarrow t=-2\)

Do đó B(1;4) và đường thẳng \(\Delta\) cần tìm có phương trình x=1

11 tháng 4 2017

AB giao AH \(\Rightarrow A=\left\{{}\begin{matrix}x-3y+11=0\\3x+7y-15=0\end{matrix}\right.\)

\(\Rightarrow A\left(-2;3\right)\)

AB giao BH \(\Rightarrow B=\left\{{}\begin{matrix}x-3y+11=0\\3x-5y+13=0\end{matrix}\right.\)

\(\Rightarrow B\left(4;5\right)\)

*\(AH\perp BC\Rightarrow BC:7x-3y+a=0\)

Mà BC đi qua B \(\Rightarrow7\times4-3\times5+c=0\Rightarrow c=-13\)

BC: \(7x-3y-13=0\)

*\(BH\perp AC\Rightarrow AC:5x+3y+c=0\)

Mà AC đi qua A \(\Rightarrow5\times\left(-2\right)+3\times3+c=0\Rightarrow c=1\)

AC: \(5x+3y+1=0\)

25 tháng 2 2018

tại sao tính được BC: 7x-3y+c =0 ạ ?

18 tháng 4 2016

Giả sử \(C\left(c;-c;-3\right)\in d_1\)

           \(D\left(5d+16;d\right)\in d_2\)

\(\Rightarrow\overrightarrow{CD}=\left(5d+16-c;d+c+3\right)\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{CD}=\overrightarrow{BA}=\left(3;4\right)\)

                                    \(\Rightarrow\begin{cases}5d+16-c=3\\d+c+3=4\end{cases}\)\(\Leftrightarrow\begin{cases}5d-c=-13\\d+c=1\end{cases}\)

                                    \(\Leftrightarrow\begin{cases}d=-2\\c=3\end{cases}\)

                                    \(\Rightarrow C\left(3;-6\right);D\left(6;-2\right)\)

Ta có : \(\overrightarrow{BA}=\left(3;4\right);\overrightarrow{BC}=\left(4;-3\right)\) không cùng phương => A, B, C, D không thẳng hàng => ABCD là hình bình hàng

Vậy \(C\left(3;-6\right);D\left(6;-2\right)\)

11 tháng 12 2016

vãi cả hình bình hàng

 

8 tháng 4 2016

A B C P(1,2;5,6)

Điểm P có tọa độ \(\left(\frac{5}{6};\frac{28}{5}\right)\). Đặt \(\widehat{ABC}=\alpha\). Do tam giác ABC cân tại A nên \(\alpha\in\left(0;\frac{\pi}{2}\right)\) do đó \(\alpha=\left(\widehat{AB,BC}\right)=\left(\widehat{BC,CA}\right)\)

và \(\cos\alpha=\frac{\left|4.1+\left(-1\right).\left(-2\right)\right|}{\sqrt{4^2+\left(-1\right)^2}.\sqrt{1^2+\left(-2\right)^2}}=\frac{6}{\sqrt{5.17}}\)

Do đó bài toán trở thành viết phương trình đường thẳng đi qua \(P\left(\frac{6}{5};\frac{28}{7}\right)\) không song song với AB, tạo với BC góc \(\alpha\) mà \(\cos\alpha=\frac{6}{\sqrt{5.17}}\) (1)

Đường thẳng AC cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right)\) với \(a^2+b^2\ne0\) và \(a\ne-4b\) (do AC không cùng phương với AB). Từ đó và (1) suy ra :

\(\frac{6}{\sqrt{5.17}}=\frac{\left|a-2b\right|}{\sqrt{5}.\sqrt{a^2+b^2}}\Leftrightarrow6\sqrt{a^2+b^2}=\sqrt{17}.\left|a-2b\right|\)

                              \(\Leftrightarrow19a^2+68ab-32b^2=0\)

                              \(\Leftrightarrow\left(a+4b\right)\left(19a-8b\right)=0\)

                              \(\Leftrightarrow19a=8b\) (do \(a\ne-4b\) (2)

Từ (2) và do \(a^2+b^2\ne0\), chọn a=40, b=95 được phương trình đường thẳng AC cần tìm là \(40\left(x-\frac{6}{5}\right)+95\left(y-\frac{28}{5}\right)=0\) hay \(8x+19y-116=0\)