\(d_1:x+y+3=0\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

Giả sử \(C\left(c;-c;-3\right)\in d_1\)

           \(D\left(5d+16;d\right)\in d_2\)

\(\Rightarrow\overrightarrow{CD}=\left(5d+16-c;d+c+3\right)\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{CD}=\overrightarrow{BA}=\left(3;4\right)\)

                                    \(\Rightarrow\begin{cases}5d+16-c=3\\d+c+3=4\end{cases}\)\(\Leftrightarrow\begin{cases}5d-c=-13\\d+c=1\end{cases}\)

                                    \(\Leftrightarrow\begin{cases}d=-2\\c=3\end{cases}\)

                                    \(\Rightarrow C\left(3;-6\right);D\left(6;-2\right)\)

Ta có : \(\overrightarrow{BA}=\left(3;4\right);\overrightarrow{BC}=\left(4;-3\right)\) không cùng phương => A, B, C, D không thẳng hàng => ABCD là hình bình hàng

Vậy \(C\left(3;-6\right);D\left(6;-2\right)\)

11 tháng 12 2016

vãi cả hình bình hàng

 

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

10 tháng 2 2018

vì sao A (t;t) va C (t;-t)

9 tháng 4 2016

B A K H C E I D

Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.

Gọi I là giao điểm của AC và BD

Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)

Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)

Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)

Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE

- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)

Do I thuộc (C) nên có phương trình :

\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)

- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :

\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)

- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)

Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)

Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)

Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)

24 tháng 7 2016

cho mình hỏi vì sao góc HIE = 2 HAE

 

2 tháng 4 2016

Xét điểm \(B\left(3+t;-2t\right)\in d_2\). Lấy điểm A sao cho M(1;2) là trung điểm của AB. Khi đó \(A\left(1-t;4+2t\right)\) và 

\(A\in d_1\Leftrightarrow\frac{1-t-3}{3}=\frac{4+2t}{-1}\Leftrightarrow t=-2\)

Do đó B(1;4) và đường thẳng \(\Delta\) cần tìm có phương trình x=1

30 tháng 3 2017

Áp dụng công thức cos =

ta có cos =

=> cos = = = => = 450

Vậy số đo góc giữa hai đường thẳng \(d_1\)\(d_2\) là 45 độ.

30 tháng 3 2017

a) Xét hệ \(\left\{{}\begin{matrix}4x-10y+1=0\\x+y+2=0\end{matrix}\right.\)

D = 4.1 = 10.1 = -6 ≠ 0

Vậy d1 và d2 cắt nhau

b) Tương tự, ta có: d1 :\(12x-6y+10=0\) ;

d2= \(2x-y-7=0\)

D = 12 . (-1) - (-6).2 = -12 + 12 = 0

Dx = (-6) . (-7) - (-1). 10 = 42 + 10 = 52 ≠ 0

Vậy d1 // d2

c) Tương tự, ta có d1: \(8x+10y-12=0\)

d2:\(4x+5y-6=0\)

D = 8 . 5 - 4 . 10 = 0

Dx = 10. (-6) - (-12) . 5 = 0

Dy = (-12) . 4 - (-6) . 8 = 0

Vậy d1 trùng d2.

8 tháng 4 2016

\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)

(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)

d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)

Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến 

Suy ra \(\left(Q\right):x-2z+12=0\)

 
1 tháng 4 2016

A B C d2 d1

Vì \(d_1\) là đường cao kẻ từ B nên đường thẳng AC vuông góc với  \(d_1\) 

Đường thẳng  \(d_1\)  có vec tơ pháp tuyến \(\overrightarrow{n}=\left(5;3\right)\) do đó nhận \(\overrightarrow{u}=\left(3;-5\right)\) làm vec tơ chỉ phương.

Vậy đường thẳng AC đi qua A(-4;5), với vec tơ pháp tuyến \(\overrightarrow{u}=\left(3;-5\right)\), do dó có phương trình \(3\left(x+4\right)-5\left(y-5\right)=0\) hay \(3x-5y+37=0\)

Đường thẳng AC cắt \(d_2\) tại C có tọa độ của hệ :

\(\begin{cases}3x+8y+11=0\\3x-5y+37=0\end{cases}\)

Giải hệ thu được (x;y)=(-9;2) do đó C(-9;2)

Tương tự như trên cũng được phương trình tổng quát AB là \(8x-3y+47=0\) và \(B\left(-3;\frac{23}{3}\right)\)

Từ đó \(\overrightarrow{BC}=\left(-6;-\frac{17}{3}\right)=-\frac{1}{3}\left(18;17\right)\)

Suy ra đường thẳng  BC có vec tơ chỉ phương \(\overrightarrow{u}=\left(18;17\right)\) do đó nhận vec tơ \(\overrightarrow{n}=\left(17;-18\right)\) làm vec tơ pháp tuyến

Vậy BC có phương trình tổng quát \(17\left(x+9\right)-18\left(y-2\right)=0\) hay \(17x-18y+189=0\)