Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a) VÌ D là trung điểm của AB
E là trung điểm của AC
=>DE là đường trung bình của tg ABC
Hay DE // BC. =>tg ADE đồng dạng vs tg ABC(trong SGK có định lí đó)
b) Ta có: DE là đường trung bình của tg ABC => AD/AB = AE/AC =1/2
S tg ADE / S tg ABC = (1/2)2 =1/4
Mà S tg ADE = 4 cm2 => S tg ABC = 16 (cm)
Mặt khác: S tg ABC = (AH x BC) / 2 =>AH x BC = 32(cm)
=>AH= 32 / 8=4(cm)
Bài này dễ, chỉ cần suy nghĩ thì bạn sẽ làm đc
a) Xét tam giác AHD và tam giác ABH có:
Góc A chung
\(\widehat{ADH}=\widehat{AHB}\left(=90^o\right)\)
\(\Rightarrow\Delta AHD\sim\Delta ABH\left(g-g\right)\)
\(\Rightarrow\frac{AH}{AB}=\frac{AD}{AH}\Rightarrow AH^2=AB.AD\)
b) Ta có tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
Vậy thì \(\widehat{DHA}=\widehat{DEA}\)
Lại có \(\widehat{DHA}=\widehat{CBA}\) nên \(\widehat{DEA}=\widehat{CBA}\)
Suy ra \(\Delta ADE\sim\Delta ACB\left(g-g\right)\)
c) Gọi I là giao điểm của AO và DE.
Xét tam giác vuông ABC có AO là trung tuyến ứng với cạnh huyền nên OA = OC hay \(\widehat{OAC}=\widehat{OCA}\)
Lại có \(\widehat{AED}=\widehat{ABC}\) nên \(\widehat{OAC}+\widehat{DEA}=\widehat{OCA}+\widehat{ABC}=90^o\)
Suy ra \(\widehat{AIE}=90^o\) hay \(AO\perp DE\)
d) Ta có do \(AO\perp DE\) nên:
\(S_{ADOE}=\frac{1}{2}DE.OA=\frac{1}{2}AH.\frac{BC}{2}=\frac{1}{2}a.AH\)
Vậy thì \(S_{ADOE}\) lớn nhất khi AH lớn nhất.
Xét tam giác vuông ABC, ta có
\(BC.AH=AB.AC\le\frac{AB^2+AC^2}{2}=\frac{BC^2}{2}=2a^2\)
\(\Rightarrow AH\le a\)
Vậy AH lớn nhất khi AH = a tức là tam giác ABC vuông cân tại A.
a: Xet ΔADE và ΔACB có
góc ADE=góc ACB
góc DAE chung
=>ΔADE đồng dạng với ΔACB
b: Xét ΔIDB và ΔICE có
góc IDB=góc ICE
góc I chung
=>ΔIDB đồng dạng với ΔICE
=>ID/IC=IB/IE
=>ID*IE=IB*IC
Trả lời:
P/s Nghĩ gì làm đấy nên hông chắc à nha!!! (^-^)
b)Xét tam giác AEC và tam giác ADB, có:
+ Góc AEC = góc ADB (Giả thiết)
+ Góc A chung
=> tam giác AEC đồng dạng với tam giác ADB (G-G)
a) Ta có: AE/AB=AD/AC;AB/AC=ED/BC (VÌ tam giác AEC đồng dạng với tam giác ADB ở chứng minh trên)
=> ED//BC
+) Xét tam giác AED và tam giác ABC, có:
+ AED = ABC ( hai góc đồng dạng do ED//BC)
+ Góc A chung
=> Tam giác AED đồng dạng với tam giác ABC (G-G)
=> AE/AB = AD/AC ( Tính chất )
=> AB.AC = AD.AE ( đpcm )
~Học tốt!~
Trả lời;
P/s: Ko bik có đúng ko!!!
Ta có: MD/ME = NE/ND (VÌ tam giác AEC đồng dạng với tam giác ADB ở chứng minh trên)
=> ED//BC
+) Xét tam giác AED và tam giác ABC, có:
+ AED = ABC ( hai góc đồng dạng do ED//BC)
+ Góc A chung
=> Tam giác AED đồng dạng với tam giác ABC (G-G)
=> MD/ME = NE/ND ( Tính chất )
=> MD.NE = ME.ND ( đpcm )
~Học tốt!~