K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

A B C

Tan B = \(\dfrac{AC}{AB}=\dfrac{5}{12}\)

hay \(\dfrac{AC}{6}=\dfrac{5}{12}\)

\(\Leftrightarrow\) AC = \(\dfrac{30}{12}=2,5\) (cm)

Vậy AC = 2,5 cm

15 tháng 10 2023

a: Xét ΔABC có

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(10^2+15^2-BC^2=2\cdot10\cdot15\cdot cos80\)

=>\(BC^2=325-300\cdot cos80\)

=>\(BC\simeq16,52\left(cm\right)\)

b: Xét ΔABC có \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)

=>\(\dfrac{15}{sinB}=\dfrac{10}{sinC}=\dfrac{16.52}{sin80}\)

=>\(\left\{{}\begin{matrix}sinB=\dfrac{15\cdot sin80}{16.52}\simeq0.89\\sinC\simeq0.6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}\simeq63^0\\\widehat{C}\simeq57^0\end{matrix}\right.\)

26 tháng 12 2023

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{5}{7}\)

=>\(\dfrac{BD}{5}=\dfrac{DC}{7}\)

mà BD+DC=BC=6

nên \(\dfrac{BD}{5}=\dfrac{CD}{7}=\dfrac{BD+CD}{5+7}=\dfrac{6}{12}=\dfrac{1}{2}\)

=>BD=2,5; CD=3,5

=>\(\dfrac{BD}{BC}=\dfrac{5}{12};\dfrac{CD}{CB}=\dfrac{7}{12}\)

\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}\)

\(=\overrightarrow{AB}+\dfrac{5}{12}\cdot\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{5}{12}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{7}{12}\cdot\overrightarrow{AB}+\dfrac{5}{12}\cdot\overrightarrow{AC}\)

=>Chọn C

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Áp dụng định lí cosin trong tam giác ABC ta có:

\({a^2} = {b^2} + {c^2} - 2bc.\cos A\)\( \Rightarrow \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Mà \(AB = c = 5,{\rm{ }}AC = b = 6,{\rm{ }}BC = a = 7\).

\( \Rightarrow \cos A = \frac{{{6^2} + {5^2} - {7^2}}}{{2.5.6}} = \frac{1}{5}\)

Chú ý

Từ định lí cosin, ta suy cách tìm góc khi biết độ dài 3 cạnh

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\;\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\;\cos C = \frac{{{b^2} + {a^2} - {c^2}}}{{2ab}}.\)

27 tháng 10 2023

a: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow cosA=\dfrac{13^2+15^2-12^2}{2\cdot13\cdot15}=\dfrac{25}{39}\)

=>\(\widehat{A}\simeq50^0\)

b: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(\dfrac{5^2+8^2-BC^2}{2\cdot5\cdot8}=cos60=\dfrac{1}{2}\)

=>\(25+64-BC^2=40\)

=>\(BC^2=49\)

=>BC=7

6 tháng 11 2019

Diện tích tam giác ABC là:

S = 1 2 A B . A C . sin A = 1 2 .5.6. sin 30 ° = 15 2

Chọn A