Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AC2 = AB2 + BC2 - 2.AB.BC.cos(60)
⇒ AC2 = 27
⇒ AC = 3\(\sqrt{3}\)
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)
⇒ \(\dfrac{3}{sinC}=\dfrac{6}{sinA}=\dfrac{3\sqrt{3}}{sin60}\)
⇒ \(\left\{{}\begin{matrix}sinA=1\\sinC=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\widehat{A}=90^0;\widehat{C}=30^0\)
\(a,AC=\sqrt{\left(4-7\right)^2+\left(6-\dfrac{3}{2}\right)^2}=\sqrt{9+\dfrac{81}{4}}=\dfrac{3\sqrt{13}}{2}\\ AB=\sqrt{\left(4-1\right)^2+\left(6-4\right)^2}=\sqrt{9+4}=\sqrt{13}\\ BC=\sqrt{\left(1-7\right)^2+\left(4-\dfrac{3}{2}\right)^2}=\sqrt{36+\dfrac{25}{4}}=\dfrac{13}{2}\)
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{1}{32}\)
\(\Rightarrow A\approx92^0\)
\(p=\dfrac{AB+AC+BC}{2}=\dfrac{31}{2}\)
\(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\simeq40\)
\(r=\dfrac{S}{p}=\dfrac{80}{31}\)
Ta có P = A B → + A C → . B C → = A B → + A C → . B A → + A C → .
= A C → + A B → . A C → − A B → = A C → 2 − A B → 2 = A C 2 − A B 2 = b 2 − c 2 .
Chọn A.
\(a,\overrightarrow{AB}=\left(2;10\right)\)
\(\overrightarrow{AC}=\left(-5;5\right)\)
\(\overrightarrow{BC}=\left(-7;-5\right)\)
\(b,\) Thiếu dữ kiện
\(c,Cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\dfrac{\left|2\left(-5\right)+10.5\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{2\sqrt{13}}{13}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{AC}\right)=56^o18'\)
\(Cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\left|2\left(-7\right)+10\left(-5\right)\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-7\right)^2+\left(-5\right)^2}}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=43^o9'\)
a: Xét ΔABC có
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(10^2+15^2-BC^2=2\cdot10\cdot15\cdot cos80\)
=>\(BC^2=325-300\cdot cos80\)
=>\(BC\simeq16,52\left(cm\right)\)
b: Xét ΔABC có \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
=>\(\dfrac{15}{sinB}=\dfrac{10}{sinC}=\dfrac{16.52}{sin80}\)
=>\(\left\{{}\begin{matrix}sinB=\dfrac{15\cdot sin80}{16.52}\simeq0.89\\sinC\simeq0.6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}\simeq63^0\\\widehat{C}\simeq57^0\end{matrix}\right.\)