K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

\(a,AC=\sqrt{\left(4-7\right)^2+\left(6-\dfrac{3}{2}\right)^2}=\sqrt{9+\dfrac{81}{4}}=\dfrac{3\sqrt{13}}{2}\\ AB=\sqrt{\left(4-1\right)^2+\left(6-4\right)^2}=\sqrt{9+4}=\sqrt{13}\\ BC=\sqrt{\left(1-7\right)^2+\left(4-\dfrac{3}{2}\right)^2}=\sqrt{36+\dfrac{25}{4}}=\dfrac{13}{2}\)

11 tháng 12 2021

\(c,BC^2=AB^2+AC^2\) nên \(\Delta ABC\) vuông tại A

a: \(\overrightarrow{AB}=\left(-3;-2\right)\)

\(\overrightarrow{AC}=\left(3;-\dfrac{3}{2}\right)\)

Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\) nên ΔABC vuông tại A

b: \(\cos\left(\overrightarrow{a'},\overrightarrow{b'}\right)=\dfrac{1\cdot1+2\cdot3}{\sqrt{1^2+2^2}\cdot\sqrt{1^2+3^2}}=\dfrac{7\sqrt{2}}{10}\)

hay \(\left(\overrightarrow{a'},\overrightarrow{b'}\right)=8^0\)

11 tháng 12 2021

Dựng \(\overrightarrow{AB}=\overrightarrow{BD}\)

\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-3;-2\right)\)

\(\overrightarrow{BD}=\left(x_D-x_B;y_D-y_B\right)=\left(x_D-1;y_D-4\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D-1=-3\\y_D-4=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=2\end{matrix}\right.\)

\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\cos\left(\overrightarrow{BD};\overrightarrow{BC}\right)=\dfrac{-3\cdot6+\left(-2\right)\cdot\dfrac{-5}{2}}{\sqrt{\left(-3\right)^2+\left(-2\right)^2}\cdot\sqrt{6^2+\left(-\dfrac{5}{2}\right)^2}}\)

\(=\dfrac{\left(-18+5\right)}{\sqrt{13}\cdot\sqrt{\dfrac{13}{2}}}-\sqrt{2}\)

\(\Leftrightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=45^0\)

a: vecto AB=(-7;1)

vecto AC=(1;-3)

vecto BC=(8;-4)

b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)

\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)

\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)

17 tháng 5 2023

\(a,\) \(\overrightarrow{BC}=\left(4;-2\right)\Rightarrow BC=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\)

\(b,\) P là trung điểm AB

\(\left\{{}\begin{matrix}x_P=\dfrac{x_A+x_B}{2}=\dfrac{1-1}{2}=0\\y_P=\dfrac{y_A+y_B}{2}=\dfrac{-2+4}{2}=1\end{matrix}\right.\)

\(\Rightarrow P\left(0;1\right)\)

\(CP\left\{{}\begin{matrix}quaC\left(3;2\right)\\VTCP\overrightarrow{CP}=\left(-3;-1\right)\Rightarrow VTPT\overrightarrow{n}=\left(1;-3\right)\end{matrix}\right.\)

\(PTTQ\) của \(CP:1\left(x-3\right)-3\left(y-2\right)=0\)

\(\Leftrightarrow x-3-3y+6=0\)

\(\Leftrightarrow x-3y+3=0\)

 

 

31 tháng 12 2023

Câu 2:

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=\left(2a\right)^2+\left(2a\sqrt{3}\right)^2=16a^2\)

=>BC=4a

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{1}{2}\)

nên \(\widehat{ABC}=30^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=60^0\)

Lấy điểm E sao cho \(\overrightarrow{AB}=\overrightarrow{BE}\)

=>B là trung điểm của AE

=>\(\widehat{CBE}+\widehat{CBA}=180^0\)(hai góc kề bù)

=>\(\widehat{CBE}=180^0-30^0=150^0\)

\(\overrightarrow{AB}\cdot\overrightarrow{BC}=\overrightarrow{BE}\cdot\overrightarrow{BC}\)

\(=BE\cdot BC\cdot cos\left(\overrightarrow{BE};\overrightarrow{BC}\right)\)

\(=2a\sqrt{3}\cdot4a\cdot cos150=-12a^2\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|=\left|\overrightarrow{CB}\right|=CB=4a\)