Cho tam giác AABC cân tại A,M là trung điểm của BC.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

Ta có: ΔAMC vuông tại M

=>AC là cạnh lớn nhất trong ΔAMC

=>MC<AC

mà MC=MB

nên BM<AC

c: Xét ΔBAC có DM//AC

nên \(\dfrac{DM}{AC}=\dfrac{BM}{BC}\)

=>\(\dfrac{DM}{AC}=\dfrac{1}{2}\)

=>AC=2DM

mà AC=AB

nên AB=2DM

13 tháng 2 2020

câu b là tpg của góc ABC ...... chứng minh góc ABM= góc ACM

a) tam giác ABC vuông tại A

=> AB2 + AC2 = BC2 (định lý py-ta-go)

=> 92 + AC2 = 152

=> AC2 = 225 - 81

=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)

t i c k đúng nhé

a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)

                              => góc C < góc B < góc A (định lý)

14 tháng 2 2016

moi hok lop 6