K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2021

a, Xét tam giác AHB và tam giác CHA ta có : 

^BAM = ^MCA ( cùng phụ ^CAM ) 

^AHB = ^CHA = 900 

Vậy tam giác AHB ~ tam giác CHA ( g.g ) 

\(\frac{AH}{CH}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC=4.9=36\Rightarrow AH=6\)cm 

Theo định lí Pytago tam giác AHC vuông tại H

\(AC^2=AH^2+HC^2=81+36=117\Rightarrow AC=3\sqrt{13}\)cm 

-> HB + HC = BC = 9 + 4 = 13 cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB^2=BC^2-AC^2=169-\left(3\sqrt{13}\right)^2=52\Rightarrow AB=2\sqrt{13}\)cm 

mà BM là đường trung tuyến => \(AM=\frac{1}{2}AC=\frac{3\sqrt{13}}{2}\)cm 

Theo định lí Pytago tam giác ABM vuông tại A

\(BM^2=AB^2+AM^2=\left(2\sqrt{13}\right)^2+\left(\frac{3\sqrt{13}}{2}\right)^2=\frac{325}{4}\Rightarrow BM=\frac{5\sqrt{13}}{2}\)cm 

b, Xét tam giác ABK và tam tam giác MBA ta có : 

^B _ chung 

^AKB = ^MAB = 900

Vậy tam giác ABK ~ tam giác MBA ( g.g ) 

\(\Rightarrow\frac{AB}{MB}=\frac{BK}{AB}\Rightarrow AB^2=BK.MB\)(1) 

tương tự xét tam giác ABH ~ tam giác CBA ( g.g )

\(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH.BC\)(2)

Từ (1) ; (2) suy ra : \(BK.MB=BH.BC\)(3) 

(3) => \(\frac{BK}{BC}=\frac{BH}{MB}\)

Xét tam giác BKH và tam giác BCM ta có : 

^B _ chung 

\(\frac{BK}{BC}=\frac{BH}{MB}\)( cmt )

Vậy tam giác BKH = tam giác BCM ( c.g.c )

=> ^BKH = ^BCM ( 2 góc tương ứng ) 

4 tháng 4 2021

undefined

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

7 tháng 6 2021

B A C E M H D

a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung

b,\(\Delta ABC\sim\Delta HBA\) theo a

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)

                                     \(=4.\left(4+9\right)\)

\(\Rightarrow AB=2\sqrt{13}\) (cm)

Áp dụng định lí py-ta-go trong \(\Delta ABH\):

\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)

Vì \(AH=DE=6cm\)

c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung

\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)

Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)

-Chúc bạn học tốt-

7 tháng 6 2021

Kí hiệu: \(\sim\) này là đồng dạng nha

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

=>AC=20(cm)

 

24 tháng 5 2018

â ) Ta có : AC \(\perp\) AB ( tam giác ABC vuông tại A ) 

              : BK  \(\perp\)AB ( gt ) 

Do đo : AC // BK ( vì cùng vuông góc với AB ) 

Xét tứ giác ABKC , ta có :

\(\widehat{A}=90^O\) ( tam giác ABC vuông tại A ) 

\(\widehat{B}=90^O\left(gt\right)\)

AC // BK ( cmt )

Do đo : tứ giác ABKC là hình thang vuông 

b ) Ta co : AC // BK  ( cmt ) 

=> \(\widehat{K_1}=\widehat{A_2}\) ( hai góc so le trong của hai đường thẳng song song ) 

Xét :\(\Delta BAKva\Delta HCA,taco:\)

\(\widehat{B}=\widehat{H}=90^o\)

\(\widehat{K_1}=\widehat{A_2}\left(cmt\right)\)

Do do : \(\Delta BAK\) đồng dạng  \(\Delta HCA\)( g - g ) 

= > \(\frac{AB}{AK}=\frac{CH}{AC}\)

=> AC . AC = AK . CH 

c) CÂU NÀY CÓ 2 CÁCH NHA 

Cach 1 ) 

Ta có : \(\widehat{A_1}+\widehat{B_1}=90^o\) ( tổng số đo hai góc nhọn trong tam giác vuông ) 

mà   :  \(\widehat{A_1}+\widehat{A_2}=90^o\) ( tia AK nằm giữa hai tia AB và AC ) 

nên \(\widehat{B_1}=\widehat{A_2}\) ( cung phụ vào góc  \(\widehat{A_1}\)  ) 

Xét : \(\Delta ABHva\Delta CAH,taco:\)

\(\widehat{H_1}=\widehat{H_2}=90^o\)

 \(\widehat{B_1}=\widehat{A_2}=\left(cmt\right)\)

Do do : \(\Delta ABH\) đồng dạng  \(\Delta CAH\left(g-g\right)\)  

\(=>\frac{HC}{AH}=\frac{AH}{HB}\)

\(=>AH.AH=HB.HC\)

              \(AH^2=9.16\)

              \(AH^2=144\)

                \(AH=\sqrt{144}=12cm\)

Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H 

         \(AB^2=AH^2+BH^2\)

          \(AB=\sqrt{12^2+9^2}\)

            \(AB=\sqrt{144+81}\)

            \(AB=\sqrt{225}\)

            \(AB=15cm\)

Cách 2 : ( của lớp 9 nha ) 

Ta có : BC = BH + HC = 9 + 16 = 25cm ( vì H nằm giữa B và C ) 

Áp dụng hệ thức lượng vào \(\Delta ABC\) vuông tại A        ( \(\widehat{A}=90^o;AH\perp BC\) ) 

\(AB^2=BH.BC\)

\(AB^2=9.25\)

\(AB^2=225\)

\(AB=\sqrt{225}=15cm\)

Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H 

\(AH^2=AB^2-BH^2\)

\(AH^2=15^2-9^2\)

\(AH^2=225-81\)

\(AH^2=144\)

\(AH=\sqrt{144}=12cm\)

CÒN NHIỀU CÁCH NỮA NHA 

OK CHÚC BẠN HỌC TỐT !!!!! 

    

24 tháng 5 2018

A B C K H

a) Ta có :  \(KB\perp AB\)

                 \(AC\perp AB\)

\(\Rightarrow BK//AC\)

\(\Rightarrow\) tứ giác ABKC là hình thang

b) Ta có BK // AC

\(\Rightarrow\widehat{AKB}=\widehat{KAC}\)( so le trong )

Xét tam giác BAK và tam giác HCA có :

\(\widehat{AKB}=\widehat{KAC}\)

\(\widehat{ABK}=\widehat{AHC}\left(=90^o\right)\)

\(\Rightarrow\)tam giác BAK đồng dạng với tam giác HCA ( g-g ) (đpcm)

\(\Rightarrow\frac{BA}{HC}=\frac{AK}{CA}\)

\(\Leftrightarrow AB\times AC=AK\times CH\left(đpcm\right)\)

c) Xét tam giác ABC và tam giác HBA có :

\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)

Chung  \(\widehat{ABC}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA ( g-g )

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{AB}\)

\(\Leftrightarrow AB^2=BC\times HB\)

\(\Leftrightarrow AB^2=\left(9+16\right)\times9\)

\(\Leftrightarrow AB^2=225\)

\(\Leftrightarrow AB=15\left(cm\right)\)

Áp dụng định lý Pi-ta-go cho tam giác ABH vuông tại H ta có :

\(BH^2+AH^2=AB^2\)

\(\Leftrightarrow9^2+AH^2=15^2\)

\(\Leftrightarrow81+AH^2=225\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Vậy AB = 15 cm ; AH = 12 cm

16 tháng 12 2017

1a) A=D=E=90 độ

=>AEHD là hcn 

=>AH=DE

b)Xét tam giác DBH vuông tại D có:

DI là đường trung tuyến ứng với cạnh huyền BH

=>DI=BH/2=IH

=>tam giác IDH cân tại I

=>góc IDH=góc IHD (1)

Gọi O là gđ 2 đường chéo AH và DE

=>OD=OA=OE=OH (tự c/m)

=> tam giác DOH cân tại O

=> góc ODH=góc OHD(2)

từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)

=>IDvuông góc DE(3)

Cmtt ta được: KEvuông góc DE(4)

Từ (3)và (4) => DI//KE.

16 tháng 12 2017

2a) Ta có góc HAB+góc HAC=90 độ (1)

Xét tam giác ABC vuông tại A có 

AM là đg trung tuyến ứng vs cạnh huyền BC

=>AM=MC

=>tam giác AMC cân

=>góc MAC=góc ACM

Lại có: góc HAC+góc ACH=90 độ(2)

Từ (1) và (2) => góc BAH=góc ACM

Mà góc AMC=góc MAC(cmt)

=>ABH=MAC(3)

b)A=D=E=90 độ

=>AFHE là hcn

Gọi O là gđ EF và AM

OA=OF(tự cm đi nha)

=>tam giác OAF cân

=>OAF=OFA(4)

Ta có : OAF+MCA=90 độ(5)

Từ (3)(4) và (5)

=>MAC+OFA=90 độ

Hay AM vuông góc EF

k giùm mình nha.