K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

o x y A B C D E F

8 tháng 12 2015

góc A = 0 độ  hả ?????????????

21 tháng 3 2020
https://i.imgur.com/HixfLd8.jpg
21 tháng 3 2020

Cảm ơn bạn nha^^

4 tháng 3 2020

a, T.g ABC cân ở A => góc ABC=(180 độ - góc A) : 2 (1)

Do AB=AC(gt)

BD=CE(gt)

=> AB+BD=AC+CE

hay AD=AE

=>T.g ADE cân ở A => góc D = (180 độ - góc A) : 2 (2)

Từ 1 và 2 => góc ABC = góc D và 2 góc ở vị trí đồng vị nên BC//DE

b,Do t.g ABC cân ở A => góc B1 = góc C1

mà góc B1 = góc B2 ( đối đỉnh )

góc C1 = góc C2 (đối đỉnh)

=> góc B2 = góc C2

Xét t.g DMB và t.g ENC ( góc M = góc N = 90 độ )

góc B2 = góc C2 ( chứng minh trên )

BD=CE ( giả thuyết )

=> T.g DMB = T.g ENC ( cạnh huyền - góc nhọn )

=> DM=EN ( 2 cạnh tương ứng )

c, Vì t.g DMB = t.g ENC (cmt)

=> BM=CN (hai cạnh tương ứng )

Ta có góc B1+ góc ABM = góc C1 + góc ACN = 180 độ

Mà góc B1 = góc C1 ( đã c/m )

=> góc ABM = góc ACN

Xét t.g ABM và t.g ACN có

AB=AC (gt)

góc ABM = góc ACN (cmt)

BM=CN (cmt )

=> t.g ABM = t.g ACN (c.g.c)

=> AM=AN (hai cạnh tương ứng )

Vậy t,g AMN cân tại A

d, Vì t.g ABM = t.g ACN (cmt )

=> góc HAB = góc KAC (hai góc tương ứng )

Xét t.g AHB và t.g AKC có ( góc AHB = góc AKC = 90 độ )

AB=AC (gt)

góc HAB = góc KAC (cmt )

=> t.g AHB = t.g AKC ( cạnh huyền - góc nhọn )

=> AH=AK ( 2 cạnh tương ứng )

Xét t.g AHI và t.g AKI có ( góc AHI = góc AKI = 90 độ )

cạnh AI chung

AH=AK (cmt )

=> t.g AHI = t.g AKI ( cạnh huyền - góc nhọn )

=> góc HAI = góc KAI ( 2 góc tương ứng )

=> AI là phân giác góc MAN (3)

Do góc HAI = góc KAI ( đã c/m )\

góc HAB = góc KAC (đã c/m)

=> góc HAI - góc HAB = góc KAI - góc KAC

Hay góc BAI = góc CAI

=> AI là phân giác góc BAC (4) \

Từ 3 và 4 => AI là tia phân giác chung của hai góc BAC và MAN

Hình thì mik gửi ở dưới nhé

Bạn ơi nhớ tick cho mik nhé mik làm cực lắm :(

4 tháng 3 2020

a) Ta có:

\(\left\{{}\begin{matrix}AB+BD=AD\\AC+CE=AE\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BD=CE\left(gt\right)\end{matrix}\right.\)

=> \(AD=AE.\)

=> \(DE\) // \(BC.\)

b) Ta có:

\(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{MBD}\\\widehat{ACB}=\widehat{NCE}\end{matrix}\right.\) (vì các góc đối đỉnh).

\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

=> \(\widehat{MBD}=\widehat{NCE}.\)

Xét 2 \(\Delta\) vuông \(BDM\)\(CEN\) có:

\(\widehat{BMD}=\widehat{CNE}=90^0\left(gt\right)\)

\(BD=CE\left(gt\right)\)

\(\widehat{MBD}=\widehat{NCE}\left(cmt\right)\)

=> \(\Delta BDM=\Delta CEN\) (cạnh huyền - góc nhọn).

=> \(DM=EN\) (2 cạnh tương ứng).

c) Theo câu b) ta có \(\Delta BDM=\Delta CEN.\)

=> \(BM=CN\) (2 cạnh tương ứng).

+ Ta có:

\(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABM}=180^0\\\widehat{ACB}+\widehat{ACN}=180^0\end{matrix}\right.\) (các góc kề bù).

\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

=> \(\widehat{ABM}=\widehat{ACN}.\)

Xét 2 \(\Delta\) \(ABM\)\(ACN\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

\(BM=CN\left(cmt\right)\)

=> \(\Delta ABM=\Delta ACN\left(c-g-c\right)\)

=> \(AM=AN\) (2 cạnh tương ứng).

=> \(\Delta AMN\) cân tại \(A.\)

Chúc bạn học tốt!

25 tháng 12 2019

a) Xét tam giác ABM và tam giác ACM có:

AB = AC (giả thiết)

BM = CM ( VÌ M là trung điểm BC)

AM là cạnh chung

Do đó tam giác ABM = tam giác ACM (c.c.c)

Vì tam giác ABM = tam giác ACM (chứng minh trên)

=> góc A1 = góc A2 ( hai góc tương ứng)

Vậy AM là tia phân giác góc BAC.

24 tháng 12 2019

Hình bạn tự vẽ nha!

b) Xét 2 \(\Delta\) \(BCN\)\(DCN\) có:

\(BC=DC\left(gt\right)\)

\(\widehat{BCN}=\widehat{DCN}\) (vì \(CN\) là tia phân giác của \(\widehat{BCD}\))

Cạnh CN chung

=> \(\Delta BCN=\Delta DCN\left(c-g-c\right)\)

=> \(\widehat{BNC}=\widehat{DNC}\) (2 góc tương ứng).

Ta có: \(\widehat{BNC}+\widehat{DNC}=180^0\) (vì 2 góc kề bù).

\(\widehat{BNC}=\widehat{DNC}\left(cmt\right)\)

=> \(2.\widehat{BNC}=180^0\)

=> \(\widehat{BNC}=180^0:2\)

=> \(\widehat{BNC}=90^0.\)

=> \(\widehat{BNC}=\widehat{DNC}=90^0\)

=> \(CN\perp BD.\)

Chúc bạn học tốt!

Cho tam giác ABC vuông tại A, có AB > AC. Trên tia đối của tia CA lấy điểm D\nsao cho C là trung điểm của đoạn thẳng AD. Qua C dựng đường vuông góc với AD cắt\ncạnh BD tại E.\na) Chứng minh tam giác AED là tam giác cân.\nb) Chứng minh AE là trung tuyến của tam giác ABD.\nc) Phân giác góc BEA cắt cạnh AB tại F. Gọi G là giao điểm của AE và BC. Chứng minh\nba điểm D, G, F thẳng hàng.Cho tam giác ABC vuông tại A, có AB > AC. Trên...
Đọc tiếp

Cho tam giác ABC vuông tại A, có AB > AC. Trên tia đối của tia CA lấy điểm D
\nsao cho C là trung điểm của đoạn thẳng AD. Qua C dựng đường vuông góc với AD cắt
\ncạnh BD tại E.
\na) Chứng minh tam giác AED là tam giác cân.
\nb) Chứng minh AE là trung tuyến của tam giác ABD.
\nc) Phân giác góc BEA cắt cạnh AB tại F. Gọi G là giao điểm của AE và BC. Chứng minh
\nba điểm D, G, F thẳng hàng.Cho tam giác ABC vuông tại A, có AB > AC. Trên tia đối của tia CA lấy điểm D
\nsao cho C là trung điểm của đoạn thẳng AD. Qua C dựng đường vuông góc với AD cắt
\ncạnh BD tại E.
\na) Chứng minh tam giác AED là tam giác cân.
\nb) Chứng minh AE là trung tuyến của tam giác ABD.
\nc) Phân giác góc BEA cắt cạnh AB tại F. Gọi G là giao điểm của AE và BC. Chứng minh
\nba điểm D, G, F thẳng hàng.

\n
0
5 tháng 2 2020

a/ Xét 2 tam giác vuông ΔABD và ΔEBD ta có:
Cạnh huyền BD: chung

\(\widehat{ABD}=\widehat{DBE}\left(GT\right)\)

=> ΔABD = ΔEBD (c.h - g.n)

=> AB = EB (2 cạnh tương ứng)

Gọi H là giao điểm của BD và AE

Xét ΔABH và ΔEBH ta có:

AB = EB (cmt)

\(\widehat{ABH}=\widehat{EBH}\left(GT\right)\)

BH: cạnh chung

=> ΔABH = ΔEBH (c - g - c)

=> AH = EH (2 cạnh tương ứng)

=> H là trung điểm của AE

=> BD đi qua trung điểm của AE (1)

Có: ΔABH = ΔEBH (cmt)

=> \(\widehat{AHB}=\widehat{EHB}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc kề bù

\(\widehat{AHB}=\widehat{EHB}=180^0:2=90^0\)

=> AH ⊥ BH tại H

Hay: AE ⊥ BD tại H (2)

Từ (1) và (2) => BD là đường trung trực của AE

*Có: ΔABD = ΔEBD (cmt)

=> AD = DE (2 cạnh tương ứng) (3)

ΔDEC vuông tại E

=> DE là cạnh góc vuông

Và: DC là cạnh huyền

Mà cạnh huyền luôn > cạnh góc vuông

Nên: DC > DE (4)

Từ (3) và (4) => DC > AD

Hay: AD < DC

P/s: Câu b, c có liên quan đến điểm F mà điểm F lại ko đc nhắc đến trong đề nên mik ko làm đc nhé!