Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cầu 1:
\(\frac{a+b}{a^2+ab+b^2}=\frac{49}{1801}\)
Biến đổi ta có: \(\frac{a+b}{\left(a+b\right)^2-ab}=\frac{49}{1801}\)
Cứ cho a+b=49 thì
Thế a+b vào đẳng thức trên đc:
\(\frac{a+b}{2401-ab}=\frac{49}{1801}\)
Từ đó: ta có
\(\hept{\begin{cases}a+b=49\\ab=600\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=24\\b=25\end{cases}}\)hoặc \(\hept{\begin{cases}b=24\\a=25\end{cases}}\)
Vậy phân số cần tìm là ........... (có 2 p/s nha)
Câu 2 Dễ mà ~~~~~~~
Làm biếng :3
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
a)
Để (n+1)(n+3) là số nguyên tố thì nó chỉ chia hết cho 1 và chính nó
Mà (n+1)(n+3) là tích hai số nên n+1 hoặc n+3 bằng 1
Nếu n > 2 thì n+1 và n+ 3 sẽ luôn có một số không phải là số nguyên tố
=> Tích (n+1)(n+3) sẽ không phải số nguyên tố
Nếu n = 2 thì (n+1)(n+3) = 15 => Không phải số nguyên tố
Nếu n = 1 thì (n+1)(n+3) = 8 => Không phải số nguyên tố
Nếu n = 0 thì (n+1)(n+3) = 3 => Là số nguyên tố
Vậy với n = 0 thì (n+1)(n+3) là số nguyên tố
b) Ta có
Câu hỏi của Phạm Hồng Ánh - Toán lớp 6 - Học toán với OnlineMath
BẠN THAM KHẢO
giúp mình với nha các bạn !!!!!!!!!!!!!!