K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

a) 

Để (n+1)(n+3) là số nguyên tố thì nó chỉ chia hết cho 1 và chính nó

Mà (n+1)(n+3) là tích hai số nên n+1 hoặc n+3 bằng 1

 Nếu n > 2 thì n+1 và n+ 3 sẽ luôn có một số không phải là số nguyên tố

 => Tích (n+1)(n+3) sẽ không phải số nguyên tố

Nếu n = 2 thì (n+1)(n+3) = 15 => Không phải số nguyên tố

Nếu n = 1 thì (n+1)(n+3) = 8 => Không phải số nguyên tố

Nếu n = 0 thì (n+1)(n+3) = 3 => Là số nguyên tố

Vậy với n = 0 thì (n+1)(n+3) là số nguyên tố

b) Ta có 

6 tháng 4 2017

Câu 3 : 

b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1 

=> 2n + 8 chia hết cho 2n - 1  

mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1 

=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }

=> 2n - 1 \(\in\) { 1 ,3 , 9 }

=> 2n\(\in\){ 2 , 4 ,10}

=> n\(\in\){ 1, 2 ,5 }

=> P\(\in\){ 5 , 2 , 1 }

Vì P là nguyên tố nên P\(\in\){ 5,2}

vậy n\(\in\){ 1 , 2 }

Câu 4 : 

5 tháng 12 2016

mình giải rồi không thấy ý kiến gì?

7 tháng 12 2017

1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d  \(\in\) { 2; 4 }.  (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\)
Vì vậy d  = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.

 

DD
8 tháng 12 2021

a) \(\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+10\right)^2\)

\(\Leftrightarrow n^2+2n+1+n^2+4n+4+n^2+6n+9=n^2+20n+100\)

\(\Leftrightarrow2n^2-8n-86=0\)

\(\Leftrightarrow n^2-4n=43\)

Ta có: \(n^2-4n=n^2-n-3n=n\left(n-1\right)-3n\)

\(n\left(n-1\right)\)là tích hai số tự nhiên liên tiếp nên khi chia cho \(3\)dư \(0\)hoặc \(2\).

Suy ra \(n^2-4n\)chia cho \(3\)dư \(0\)hoặc \(2\).

Mà \(43\)chia cho \(3\)dư \(1\)

do đó phương trình đã cho không có nghiệm tự nhiên. 

b) Ta có: \(n^2+h^2+b^2+k^2+n+h+b+k=\left(n^2+n\right)+\left(h^2+h\right)+\left(b^2+b\right)+\left(k^2+k\right)\)

\(=n\left(n+1\right)+h\left(h+1\right)+b\left(b+1\right)+k\left(k+1\right)\)chia hết cho \(2\).

mà \(n+h+b+k\)chia hết cho \(6\)nên chia hết cho \(2\)

suy ra \(n^2+h^2+b^2+k^2\)chia hết cho \(2\)suy ra không phải là số nguyên tố 

(do \(n^2+h^2+b^2+k^2>2\)).

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 1:

a. Gọi d là ƯCLN(n+2, n+3). Khi đó:

$n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 2:

a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đó: $a+b=24x+24y=192$

$\Rightarrow 24(x+y)=192$

$\Rightarrow x+y=8$

Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$

$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$

19 tháng 2 2017

1.Ta có :\(P=\frac{-n+2}{n-1}=\frac{-n+1+1}{n-1}=-1+\frac{1}{n-1}\)

Để\(P\in Z\)thì\(\frac{1}{n-1}\in Z\Rightarrow1⋮n-1\)=> n - 1 = -1 ; 1 => n = 0 ; 2

2.Ta có :\(M=\frac{6n-3}{4n-6}=\frac{3\left(2n-3\right)+6}{2\left(2n-3\right)}=\frac{3}{2}+\frac{3}{2n-3}\)

Để M lớn nhất thì\(\frac{3}{2n-3}\)lớn nhất => 2n - 3 nguyên dương và nhỏ nhất,tức 2n - 3 = 1 => n = 2

Vậy n = 2 thì M đạt giá trị lớn nhất là :\(\frac{3}{2}+\frac{3}{1}=\frac{9}{2}\)

3.a) TH1 : A nằm cùng phía với B,C thì trên cùng tia Ax (hay Ay),ta có AB < AC ( a < b) nên B nằm giữa A và C.Suy ra :

- AB + BC = AC => BC = AC - AB = b - a

- 2 tia BA,BC đối nhau mà 2 tia BI,BA trùng nhau (vì I thuộc đoạn AB) nên 2 tia BI,BC đối nhau => B nằm giữa I,C

=> IC = BI + BC mà BI =\(\frac{AB}{2}=\frac{a}{2}\)(I là trung điểm AB) nên IC =\(\frac{a}{2}+b-a=b-\frac{a}{2}\)

TH2 : A nằm khác phía với B,C hay A nằm giữa B,C thì 2 tia AB,AC đối nhau mà AI,AB trùng nhau (vì I thuộc đoạn AB)

=> 2 tia AI,AC đối nhau => A nằm giữa I,C => IC = IA + AC mà IA =\(\frac{AB}{2}=\frac{a}{2}\)(I là trung điểm AB) => IC =\(\frac{a}{2}+b\)

b) Ta có 3 trường hợp :

TH1 : Cả 4 điểm đều nằm trên 1 nửa mặt phẳng bờ xy thì xy không cắt đoạn nào trong 6 đoạn trên

TH2 : 1 điểm và 3 điểm còn lại nằm trên 2 nửa mặt phẳng đối nhau bờ xy.Ví dụ điểm M và 3 điểm N,P,Q thì xy cắt 3 đoạn : MN,MP,MQ

TH3 : 2 điểm và 2 điểm còn lại nằm trên 2 nửa mặt phẳng đối nhau bờ xy.Ví dụ điểm M,N và điểm P,Q thì xy cắt 4 đoạn : MP,MQ,NP,NQ

2 tháng 4 2018

Đúng không đây để mình chép với, cô mình cũng ra đề như thế này nè!

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

8 tháng 5 2017

ai muốn kết bn với tớ thì hãy click cho tớ nhé