\(\frac{ab}{a+b}\)

Chú ý ab là ab

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

Cầu 1:

\(\frac{a+b}{a^2+ab+b^2}=\frac{49}{1801}\)

Biến đổi ta có: \(\frac{a+b}{\left(a+b\right)^2-ab}=\frac{49}{1801}\)

Cứ cho a+b=49 thì

Thế a+b vào đẳng thức trên đc:

\(\frac{a+b}{2401-ab}=\frac{49}{1801}\)

Từ đó: ta có

\(\hept{\begin{cases}a+b=49\\ab=600\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=24\\b=25\end{cases}}\)hoặc \(\hept{\begin{cases}b=24\\a=25\end{cases}}\)

Vậy phân số cần tìm là ........... (có 2 p/s nha)

Câu 2 Dễ mà ~~~~~~~

Làm biếng :3

4 tháng 11 2015

giúp mình với nha các bạn !!!!!!!!!!!!!!

1 tháng 8 2019

a, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=k\)

\(\Rightarrow\hept{\begin{cases}a=5k\\b=6k\\c=7k\end{cases}}\)

\(\Rightarrow ab=5k\cdot6k=30k^2\) 

\(\Rightarrow30k^2=3000\)

\(\Rightarrow k^2=100\)

\(\Rightarrow k=\pm10\)

\(k=10\Rightarrow\hept{\begin{cases}a=5\cdot10=50\\b=6\cdot10=60\\c=7\cdot10=70\end{cases}}\)

b, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}\)

\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)

\(\Rightarrow\frac{a^2-b^2+c^2}{25-36+49}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)

\(\Rightarrow\frac{152}{38}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)

\(\Rightarrow4=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)

\(\Rightarrow\hept{\begin{cases}a^2=4\cdot25=100\\b^2=4\cdot36=144\\c^2=4\cdot49=196\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=\pm10\\b=\pm12\\c=\pm14\end{cases}}\)

29 tháng 2 2016

*)   BẬT MÍ ( ĐÁP ÁN )

a) 24

b) 63

BẠN NÀO GIẢI THÌ VIẾT RÕ CÁCH LÀM !!!!!

THANK-YOU 

T-T

29 tháng 2 2016

CÓ KHẢ NĂNG CÒN NHIỀU SỐ NỮA NHƯNG MÌNH CHỈ TÌM ĐƯỢC THỂ THÔI

3 tháng 8 2015

Vì a2+b2 chia hết cho ab

mà ab chia hết cho a

=>a2+b2 chia hết cho a

mà a2 chia hết cho a
=>b2 chia hết cho a

=>b chia hết cho a(1)

Tương tự: Vì a2+b2 chia hết cho ab

mà ab chia hết cho b

=>a2+b2 chia hết cho b

mà b2 chia hết cho b
=>a2 chia hết cho b

=>a chia hết cho b(2)

Từ (1) và (2) ta thấy:

a chia hết cho b, b chia hết cho a

=>a=b

=>\(A=\frac{a^2+b^2}{ab}=\frac{a^2+a^2}{a.a}=\frac{2.a^2}{a^2}=\frac{2}{1}=2\)

Vậy A=2

1 tháng 7 2017

\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)

\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\left(abc=105\right)\)

\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)

\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}\)

\(=1\)

13 tháng 4 2017

\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)

\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)  \(\left(abc=105\right)\)

\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)

\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}\)

\(=1\)

24 tháng 2 2017

Đặt A = \(\frac{ab}{a+b}\) = \(\frac{10a+b}{a+b}\) = 1 + \(\frac{9}{\frac{a+b}{a}}\)=  1 + \(\frac{9}{1+\frac{b}{a}}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\)nhỏ nhất => 1 + \(\frac{b}{a}\) lớn nhất => \(\frac{b}{a}\) lớn nhất => b lớn nhất,a nhỏ nhất => b = 9,a = 1

Vậy Amin\(\frac{19}{1+9}\)= 1,9

MÃi mãi có một tương lai tươi sáng

19 tháng 2 2020

Do \(abc=2018,bc+b+1\ne0\) nên thay vào biểu thức A ta có :

  \(A=\frac{2018}{abc+bc+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)

\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)

\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)

\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}=1\)

Vậy : \(A=1\) với a,b,c thỏa mãn đề.

19 tháng 2 2020

\(A=\frac{2018}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)

\(=\frac{abc}{abc+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+abc}\)

\(=1\)

Vậy ...