
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ \(P=\left(\frac{x-7\sqrt{x}+12}{x-4\sqrt{x}+3}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}.\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(x-4\sqrt{x}+4\right)-1}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-2\right)^2-1}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-2-1\right)\left(\sqrt{x}-2+1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{x-7\sqrt{x}+12+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{\left(\sqrt{x}-3\right)^2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)^2\left(\sqrt{x}-1\right)}\) => \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
b/ Để P>3/4 => \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}>\frac{3}{4}\)
+/ TH1: x>1 => \(4\left(\sqrt{x}+3\right)>3\left(\sqrt{x}-1\right)\)
<=> \(\sqrt{x}>-16\) => x>1
+/ TH2: 0<x<1 => \(4\left(\sqrt{x}+3\right)< 3\left(\sqrt{x}-1\right)\) => \(\sqrt{x}< -16\)=> Loại
ĐS: x>1
c/ P=2 <=> \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}=2\)
<=> \(\sqrt{x}+3=2\left(\sqrt{x}-1\right)\)
<=> \(\sqrt{x}=5=>x=25\)

\(a,x=49\Rightarrow\sqrt{x}=7\Rightarrow\frac{1}{\sqrt{x}-1}=\frac{1}{6}\)
\(b,x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}\right)^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\Rightarrow=\sqrt{x}=\sqrt{3}-1\) \(\Rightarrow B=\frac{1}{\sqrt{3}-2}\)
\(c,A=\frac{x+2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\Rightarrow A-B=\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) \(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}.xét:x+\sqrt{x}+1-3\sqrt{x}=x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\Rightarrow S\le\frac{1}{3}.\text{Dâu "=" xay}\Leftrightarrow x=1\left(loạidođkxd\right)\Rightarrow S< \frac{1}{3}\)
Để S = 1
\(\Rightarrow3-\sqrt{x}=2:1=2\)
\(\Rightarrow\sqrt{x}=3-2=1\)
\(\Rightarrow x=1\)
Để S = 1
\(\Rightarrow3-\sqrt{x}=2.1=2\)
\(\Rightarrow\sqrt{x}=3-2=1\)
\(\Rightarrow x=1\)