Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(S-m=\frac{x+\sqrt{x}(1-3m)+m}{3\sqrt{x}-1}\)
Để $S-m=0$ có nghiệm thì PT $x+\sqrt{x}(1-3m)+m=0$ có nghiệm không âm và khác $\frac{1}{9}$
Điều này xảy ra khi:
\(\left\{\begin{matrix} \Delta=(1-3m)^2-4m\geq 0\\ \frac{1}{9}+\frac{1}{3}(1-3m)+m\neq 0\\ S=1-3m\geq 0\\ P=m\geq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} (m-1)(9m-1)\geq 0\\ 1-3m\geq 0\\ m\geq 0\end{matrix}\right.\left\{\begin{matrix} m\leq \frac{1}{9}\\ m\geq 0\end{matrix}\right.\)
1/ ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)
\(A=\left[\frac{x}{\sqrt{x}\left(x-4\right)}-\frac{6}{3\left(\sqrt{x}-2\right)}+\frac{1}{\sqrt{x}-2}\right]:\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(=\left[\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}-2}\right]:\left(\frac{6}{\sqrt{x}+2}\right)\)
\(=\frac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\frac{\left(\sqrt{x}+2\right)}{6}\)
\(=\frac{-2}{\sqrt{x}-2}.\frac{1}{6}=-\frac{1}{3\left(\sqrt{x}-2\right)}\)
2/ Để \(A>2\Rightarrow\frac{-1}{3\left(\sqrt{x}-2\right)}>2\)\(\Rightarrow6\sqrt{x}-12+1>0\Rightarrow6\sqrt{x}-11>0\Rightarrow\sqrt{x}>\frac{11}{6}\)
\(\Rightarrow x>\frac{121}{36}\)
a/ \(P=\left(\frac{x-7\sqrt{x}+12}{x-4\sqrt{x}+3}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}.\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(x-4\sqrt{x}+4\right)-1}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-2\right)^2-1}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-2-1\right)\left(\sqrt{x}-2+1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{x-7\sqrt{x}+12+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{\left(\sqrt{x}-3\right)^2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)^2\left(\sqrt{x}-1\right)}\) => \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
b/ Để P>3/4 => \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}>\frac{3}{4}\)
+/ TH1: x>1 => \(4\left(\sqrt{x}+3\right)>3\left(\sqrt{x}-1\right)\)
<=> \(\sqrt{x}>-16\) => x>1
+/ TH2: 0<x<1 => \(4\left(\sqrt{x}+3\right)< 3\left(\sqrt{x}-1\right)\) => \(\sqrt{x}< -16\)=> Loại
ĐS: x>1
c/ P=2 <=> \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}=2\)
<=> \(\sqrt{x}+3=2\left(\sqrt{x}-1\right)\)
<=> \(\sqrt{x}=5=>x=25\)
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne\pm2\end{cases}}\)
\(P=\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{2}{\sqrt{x}+2}-\frac{4\sqrt{x}}{x-4}\)
\(\Leftrightarrow P=\frac{x+2\sqrt{x}-2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
Để P là số nguyên \(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+2}\)là số nguyên
\(\Leftrightarrow\sqrt{x}-2⋮\sqrt{x}+2\)
\(\Leftrightarrow4⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-4;0;-6;2\right\}\)
Loại những giá trị \(\sqrt{x}\in\left\{-3;-1;-4;-6;2\right\}\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\)
Vậy để P là số nguyên \(\Leftrightarrow x=0\)
Cho mình sửa 1 chút nhé :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
Để S = 1
\(\Rightarrow3-\sqrt{x}=2:1=2\)
\(\Rightarrow\sqrt{x}=3-2=1\)
\(\Rightarrow x=1\)
Để S = 1
\(\Rightarrow3-\sqrt{x}=2.1=2\)
\(\Rightarrow\sqrt{x}=3-2=1\)
\(\Rightarrow x=1\)