Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(Q=\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\left(x\ge0;x\ne1\right)\)
\(=-\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-x-\sqrt{x}+x-\sqrt{x}+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{3}{\sqrt{x}+1}\)
b) Để \(Q=-1\)
\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow\sqrt{x}+1=3\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
\(P=\left(\frac{3x+3}{x-9}-\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{3-\sqrt{x}}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right).ĐKXĐ:x\ge0,x\ne9\)
\(=\left(\frac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{3x+3-2x+6\sqrt{x}-x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(=\frac{3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3}{\sqrt{x}+3}\)
\(b,x=20-6\sqrt{11}=11-2.3\sqrt{11}+9\)
\(=\left(\sqrt{11}-3\right)^2\)
\(P=\frac{3}{\sqrt{x}+3}=\frac{3}{\sqrt{\left(\sqrt{11}-3\right)^2}+3}=\frac{3}{\sqrt{11}-3+3}=\frac{3\sqrt{11}}{11}\)
\(c,P>\frac{1}{2}\Rightarrow\frac{3}{\sqrt{x}+3}>\frac{1}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}+3}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)
\(\Leftrightarrow\frac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)\(\Leftrightarrow\frac{3-\sqrt{x}}{2\left(\sqrt{x}+3\right)}>0\)
vì \(2\left(\sqrt{x}+3\right)>0\) (nếu x=0 =>pt vô nghiệm)
\(\Rightarrow3-\sqrt{x}>0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\)
Kết hợp ĐKXĐ: \(0< x< 9\)
1. \(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
\(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4x}{x-3}\)
Vậy \(N=\frac{4x}{x-3}\)với \(x>0,x\ne4,x\ne9\)
2.Với \(x>0,x\ne4,x\ne9\)
Ta có \(N< 0\)\(\Leftrightarrow\frac{4x}{x-3}< 0\)\(\Leftrightarrow x-3< 0\)(Vì \(x>0\Leftrightarrow4x>0\)\(với\forall x\))\(\Leftrightarrow x< 3\)
Vậy ..........
3. Với \(x>0,x\ne4,x\ne9\)
Ta có \(\left|N\right|=1\Leftrightarrow\left|\frac{4x}{x-3}\right|=1\Leftrightarrow\orbr{\begin{cases}\frac{4x}{x-3}=1\\\frac{4x}{x-3}=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}4x=3-x\\4x=x-3\end{cases}}\)\(\orbr{\begin{cases}x=\frac{3}{5} \left(N\right)\\x=-1\left(N\right)\end{cases}}\)
Vậy ...............
a/ Ta có: \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
Và: \(x-1=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
=> \(P=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right].\frac{\sqrt{x}+1}{\sqrt{x}}\)
=> \(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
=> \(P=\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}\)
=> \(P=\frac{2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}=\frac{2}{x-1}\)
b/ Thay \(x=\frac{\sqrt{3}}{2+\sqrt{3}}\) => \(P=\frac{2}{\frac{\sqrt{3}}{2+\sqrt{3}}-1}=\frac{2\left(2+\sqrt{3}\right)}{\sqrt{3}-2-\sqrt{3}}\)
=> \(P=-\left(2+\sqrt{3}\right)\)
c/ \(P=\frac{2}{x-1}=-\frac{4}{\sqrt{x}+1}\) <=> \(\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{2}{\sqrt{x}+1}\)
<=> \(\frac{1}{\sqrt{x}-1}=-2\)
<=> \(1=-2\sqrt{x}+2\)
<=> \(2\sqrt{x}=1=>\sqrt{x}=\frac{1}{2}=>x=\frac{1}{4}\)
a/ \(B=\frac{1+x}{1+\sqrt{x}+x}\)
b/ Giải phương trình bậc 2 thì dễ rồi ha
c/ \(\frac{1+x}{1+\sqrt{x}+x}>\frac{2}{3}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)đung vì x khac 1
Phương trình bậc hai là\(x-\sqrt{6x}+1=0\) thì giải làm sao bạn ơi??
M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)
=\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)
\(P=\left(\frac{x\sqrt{x}}{x\sqrt{x}-1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a) \(P=\left[\frac{x\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\right]:\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\left[\frac{x\sqrt{x}}{x\sqrt{x}-1}-\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}\right]:\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{x\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{x\sqrt{x}-1}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(P=\frac{-x-\sqrt{x}}{\sqrt{x}-1}.\frac{1}{\sqrt{x}+1}\)
\(P=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{1}{\sqrt{x}+1}\)
\(P=\frac{-\sqrt{x}}{\sqrt{x}-1}\)
vậy \(P=-\frac{\sqrt{x}}{\sqrt{x}-1}\) với \(x\ge0;x\ne1\)
b) để \(P>1\Leftrightarrow\frac{-\sqrt{x}}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\frac{-\sqrt{x}}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\frac{-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{-\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{-2\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\hept{\begin{cases}-2\sqrt{x}+1>0\\\sqrt{x}-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}-2\sqrt{x}+1< 0\\\sqrt{x}-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}< \frac{1}{2}\\\sqrt{x}>1\end{cases}}\) hoặc \(\hept{\begin{cases}\sqrt{x}>\frac{1}{2}\\\sqrt{x}< 1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< \frac{1}{4}\\x>1\end{cases}\left(loai\right)}\) hoặc \(\hept{\begin{cases}x>\frac{1}{4}\\x< 1\end{cases}}\)
\(\Rightarrow\frac{1}{4}< x< 1\)
kết hợp với \(ĐKXĐ:x\ge0;x\ne1\) thì ta có \(\frac{1}{4}< x< 1\)
a/ \(P=\left(\frac{x-7\sqrt{x}+12}{x-4\sqrt{x}+3}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}.\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(x-4\sqrt{x}+4\right)-1}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-2\right)^2-1}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-2-1\right)\left(\sqrt{x}-2+1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{x-7\sqrt{x}+12+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{\left(\sqrt{x}-3\right)^2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)^2\left(\sqrt{x}-1\right)}\) => \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
b/ Để P>3/4 => \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}>\frac{3}{4}\)
+/ TH1: x>1 => \(4\left(\sqrt{x}+3\right)>3\left(\sqrt{x}-1\right)\)
<=> \(\sqrt{x}>-16\) => x>1
+/ TH2: 0<x<1 => \(4\left(\sqrt{x}+3\right)< 3\left(\sqrt{x}-1\right)\) => \(\sqrt{x}< -16\)=> Loại
ĐS: x>1
c/ P=2 <=> \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}=2\)
<=> \(\sqrt{x}+3=2\left(\sqrt{x}-1\right)\)
<=> \(\sqrt{x}=5=>x=25\)