Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\). \(\frac{\left(x-1\right)^2}{2}\)( x\(\ge0\); x\(\ne\)1)
= \(\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\) . \(\frac{\left(x-1\right)^2}{2}\)
= \(\frac{x-\sqrt{x}+2-x-\sqrt{x}+2}{\sqrt{x}-1}\). \(\frac{x-1}{2}\)
= \(\frac{\left(-2\sqrt{x}+4\right)\left(\sqrt{x}+1\right)}{2}\)
= \(\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)\)
= -x2 + \(\sqrt{x}\)+ 2
b. tự tính nha
c, P = -x2 + \(\sqrt{x}+2\)
= - (x2 - 2.x.1/2 + 1/4) +2 +1/4
= - (x-1/2)2+ 9/4
ta có (x - 1/2)2 \(\ge0\forall x\)\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\forall x\)
dấu "=" xảy ra khi và chỉ khi x-1/2 = 0
x=1/2
vậy GTLN của P= 9/4 khi và chỉ khi x=1/2
#mã mã#
Câu 3 :
\(ĐKXĐ:x>0\)
\(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)
b) Để P = 3
\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)
\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)
\(\Leftrightarrow x-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)(tm)
Vậy để \(P=3\Leftrightarrow x=4\)
Câu 1 : Hình như sai đề !! Mik sửa :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)
\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)
b) Để A < 2
\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)
\(\Leftrightarrow-1< 2\sqrt{x}-4\)
\(\Leftrightarrow2\sqrt{x}>3\)
\(\Leftrightarrow\sqrt{x}>1,5\)
\(\Leftrightarrow x>2,25\)
Vậy để \(A< 2\Leftrightarrow x>2,25\)
Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)
do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)
Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)
Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)
do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)
Đến đây xét từng TH là ra
rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)
=\(1+\frac{5}{\sqrt{x}+1}\)
Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)
Đến đây thì ez rồi
\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)
ĐK : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne4\end{cases}}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-\sqrt{x}-2\sqrt{x}+2}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\frac{1}{\sqrt{x}-2}\)
b) Để P < 1
=> \(\frac{1}{\sqrt{x}-2}< 1\)
<=> \(\frac{1}{\sqrt{x}-2}-1< 0\)
<=> \(\frac{1}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)
<=> \(\frac{1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
<=> \(\frac{3-\sqrt{x}}{\sqrt{x}-2}< 0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}3-\sqrt{x}>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}>-3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 9\\x< 4\end{cases}}\Leftrightarrow x< 4\)
2. \(\hept{\begin{cases}3-\sqrt{x}< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}< -3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>9\\x>4\end{cases}}\Leftrightarrow x>9\)
Kết hợp với ĐK => Với \(\orbr{\begin{cases}x\in\left\{0;2;3\right\}\\x>9\end{cases}}\)thì thỏa mãn đề bài
Đề bài này be bét quá, xin phép sửa lại
a) đk: \(\hept{\begin{cases}x\ge0\\x\ne\left\{1;4\right\}\end{cases}}\)
\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)
\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{x-4\sqrt{x}+3-2x+3\sqrt{x}-2+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
b) Ta có: \(P< 1\)
\(\Leftrightarrow-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}< 0\)
Mà \(\sqrt{x}+1\ge1>0\left(\forall x\right)\)
\(\Rightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}0\le x< 1\\x>4\end{cases}}\)
a, x = \(\frac{4\left(\sqrt{3}+1\right)}{3-1}-\frac{4\left(\sqrt{3}-1\right)}{3-1}\)
x = \(\left(2\sqrt{3}+2\right)-\left(2\sqrt{3}-2\right)\)
x = \(2\sqrt{3}+2-2\sqrt{3}+2\)
x = 4 (TMĐK)
=> A = \(\frac{2\sqrt{4}+1}{3\sqrt{4}+1}\)
=> A = \(\frac{5}{7}\)
Vậy x = \(\frac{4}{\sqrt{3}-1}-\frac{4}{\sqrt{3}+1}\) thì A = \(\frac{5}{7}\)
b, B = \(\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
B = \(\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}-1}\)
B = \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
c, \(\frac{B}{A}>2\) <=> \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}:\frac{2\sqrt{x}+1}{3\sqrt{x}+1}\) > 2
<=> \(\frac{3\sqrt{x}+1}{\sqrt{x}+1}>2\)
<=> \(\frac{3\sqrt{x}+1}{\sqrt{x}+1}-2>0\)
<=> \(\frac{3\sqrt{x}+1-2\sqrt{x}-2}{\sqrt{x}+1}>0\)
<=> \(\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)
mà \(\sqrt{x}+1>0\) \(\forall\) \(x\in\) ĐKXĐ
=> \(\sqrt{x}-1>0\)
<=> \(\sqrt{x}>1\)
<=> \(x>1\)
Kết hợp ĐKXĐ : x \(\ge0\) ; x \(\ne\) 1
=> x > 1 thì \(\frac{B}{A}>2\)
a/ Ta có: \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
Và: \(x-1=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
=> \(P=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right].\frac{\sqrt{x}+1}{\sqrt{x}}\)
=> \(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
=> \(P=\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}\)
=> \(P=\frac{2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}=\frac{2}{x-1}\)
b/ Thay \(x=\frac{\sqrt{3}}{2+\sqrt{3}}\) => \(P=\frac{2}{\frac{\sqrt{3}}{2+\sqrt{3}}-1}=\frac{2\left(2+\sqrt{3}\right)}{\sqrt{3}-2-\sqrt{3}}\)
=> \(P=-\left(2+\sqrt{3}\right)\)
c/ \(P=\frac{2}{x-1}=-\frac{4}{\sqrt{x}+1}\) <=> \(\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{2}{\sqrt{x}+1}\)
<=> \(\frac{1}{\sqrt{x}-1}=-2\)
<=> \(1=-2\sqrt{x}+2\)
<=> \(2\sqrt{x}=1=>\sqrt{x}=\frac{1}{2}=>x=\frac{1}{4}\)