K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

3S = 3^2+3^3+3^4+....+3^2000

3S - S = (3^2-3^2)+(3^3-3^3)+....+(3^1999 - 3^1999) + 3^2000 - 3

2S = 3^2000 - 3

=> S = \(\frac{3^{2000}-3}{2}\)

5 tháng 11 2021

C

5 tháng 11 2021

A

8 tháng 2 2017

k cho minh giai cho

AH
Akai Haruma
Giáo viên
13 tháng 10 2023

Lời giải:

$S=3^1.3^2.3^3....3^{1998}=3^{1+2+3+...+1998}=3^{1997001}$

Ta thấy các ước của $S$ có dạng $3^m$ với $0\leq m\leq 1997001$ với $m$ là số tự nhiên.

Do đó $S\not\vdots 26$ 

5 tháng 10 2023

1) \(B=1+3+3^2+...+3^{1999}+3^{2000}\)

\(3B=3\cdot\left(1+3+3^2+...+3^{2000}\right)\)

\(3B=3+3^2+...+3^{2001}\)

\(3B-B=3+3^2+3^3+...+3^{2001}-1-3-3^2-...-3^{2000}\)

\(2B=3^{2001}-1\)

\(B=\dfrac{3^{2001}-1}{2}\)

2) \(C=1+4+4^2+...+4^{100}\)

\(4C=4\cdot\left(1+4+4^2+...+4^{100}\right)\)

\(4C=4+4^2+4^3+...+4^{101}\)

\(4C-C=4+4^2+4^3+...+4^{201}-1-4-4^2-....-4^{100}\)

\(3C=4^{101}-1\)

\(C=\dfrac{4^{101}-1}{3}\)

5 tháng 10 2023

Còn D bạn.

25 tháng 12 2023

S = ( 3 + 3+33)+(34+35+36) + (37+38+39)

S = 3.(1+3+9)+34.(1+3+9)+37.(1+3+9)

S = 3.13 + 34.13+37.13

S = 13.(3+34+37) ⋮13 ( đpcm)

Tick cho mình

 

`#3107.101107`

`S = 3 + 3^2 + 3^3 + ... + 3^9`

`= (3 + 3^2 + 3^3) + ... + (3^7 + 3^8 + 3^9)`

`= 3(1 + 3 + 3^2) + ... + 3^7(1 + 3 +3^2)`

`= (1 + 3 + 3^2)(3 + ... + 3^7)`

`= 13(3 + ... + 3^7)` $\vdots 13$

$\Rightarrow S \vdots 13.$

16 tháng 1 2022

\(S=1+3+3^2+3^3+...+3^8+3^9\)

\(=1+3+3^2\left(1+3\right)+...+3^8\left(1+3\right)\)

\(=4\left(1+3^2+...+3^8\right)⋮4\)

\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+3^2+...+3^8\right)⋮4\)

17 tháng 10 2021

undefined

16 tháng 4 2022

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

 

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5 Chúc bạn học tốt !

16 tháng 4 2022

Tham khảo:

 
26 tháng 8 2021

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}=\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^3-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)=\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)=\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮20\)

Ta có: \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=-20\cdot\left(1+...+3^{96}\right)⋮20\)

24 tháng 7 2019

S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9      =   3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9      = 39 + 3 3   .   39   +   3 6   .   39      = 39 . 1 + 3 3 + 3 6   ⋮   − 39  

Vậy S chia hết cho -39