Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 2 + 22 + ... + 2150
= ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 ) + ... + ( 2146 + 2147 + 2148 + 2149 + 2150 )
= 2.(1+2+22+23+24) + 26.(1+2+22+23+24) + ... + 2146(1+2+22+23+24)
= 2.31 + 26.31 + ... + 2146.31
= 31.(2+26+...+2146) chia hết cho 31
a) S = 3 + 32 + ... + 31998
=> S = ( 3 + 32 ) + ... + ( 31997 + 31998 )
=> S = ( 3 + 9 ) + ... + 31996 . ( 3 + 32 )
=> S = 12 + ... + 31996 . 12
=> S = ( 1 + ... + 31996 ) . 12 chia hết cho 12
=> S chia hết cho 12
b) S = 3 + 32 + ... + 31998
=> S = ( 3 + 32 + 33 ) + ... + ( 31996 + 31997 + 31998 )
=> S = 39 + ... + 31995 . ( 3 + 32 + 33 )
=> S = 39 + ... + 31995 . 39
=> S = ( 1 + ... + 31995 ) . 39 chia hết cho 39
=> S chia hết cho 39
Ahihi
Nhón ba số đầu với nhau cứ thế cho đến hết
(1+3+3^2)+...+(3^2016+3^2017+3^2018)
=13+...+3^2016(1+3+3^2)
=13+...+3^2016x13
=13(1+...+3^2016)
vì 13 chia hết cho 13 =>13 nhân (1+...+3^2016) chia hết cho 13
Chuẩn không nhớ
\(S=1+3^1+3^2+3^3+...+3^{2016}+3^{2017}+3^{2018}.\)
\(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2016}\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{2016}.13\)
\(S=13\left(3^3+...+3^{2016}\right)⋮13\left(đpcm\right)\)
Hok tốt
c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)
S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...........+52008(5+52+53+54)
=65*12 + 54*65*12 + .......... + 52008*65*12
=65*12(1+54+...+52008) chia hết cho 65
=> S chia hết cho 65