\(2^0+2^2+2^4+2^6+...+2^{2014}\)

a) Chứng tỏ S chia hết cho các số 7;17;51

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S=1+2+22+23+.....+297+298+299

S=20+2+22+23+.....+297+298+299

2S=2.(20+2+22+23+.....+297+298+299)

2S=21+22+23+24+....+298+299+2100

2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)

S=2100-20

S=2100-1

bS=1+2+22+23+.....+297+298+299

 S=(1+2)+(22+23)+...+(296+297)+(298+299)

S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)

S=3+22.3+....+296.3+298.3

S=3.(1+22+.....+296+298)\(⋮\)3

Vậy S\(⋮\)

c Ta có:S=2100-1

2100=24.25=(24)25

Ta có: 24 tân cùng là 6

=>(24)25 tận cùng là 6

Hay 2100=(24)25 tận cùng là 6

=>2100-1 tận cùng là 5

Vậy S tận cùng là 5

Chúc bn học tốt

9 tháng 2 2017

\(S=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{99}+2^{100}\right)\)

\(S=1\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(S=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)

\(S=6.Q\)

\(S=2.3.Q\)

\(\Rightarrow S⋮3\) (Đpcm)

9 tháng 2 2017

S= (2+22)+(23+24)+...+(299+2100)

S=(2.3)+(23.3)+...+(299.3)

S=(2+23+...+299).3

=> S chia hết cho 3.

b) Tương tự ghép 4 số sẽ được A chia hết cho 5.A chia hết cho 3 và 5 nên A chia hết cho 15...

2) 21+22+23+24 có tận cùng là 0

25+26+27+28 có tận cùng là 0

Vì có 21 đến 2100 là 100 số, vậy cứ nhóm 4 số như vậy được tận cùng là 0

Chúc bạn học tốt!

11 tháng 11 2016

A=\(17^{2008}-11^{2008}-3^{2008}\)

A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)

A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)

A=\(\left(.........9\right)\)

Vậy A có chữ số tận cùng là 9

11 tháng 11 2016

2)M=\(17^{25}+24^4-13^{21}\)

M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)

M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)

M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)

M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)

M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)

M=\(\left(...........0\right)⋮10\)

Vậy M\(⋮10\)

4 tháng 7 2017

bạn ghi thế này tớ k hiểu

4 tháng 7 2017

Tớ ghi giống y hệt đề mà

7 tháng 5 2016

\(S=2\left(1+2+2^2+2^3+...+2^{99}\right)\)

\(\Rightarrow S=2\left[\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\right]\)

\(\Rightarrow S=6\left(1+2^2+2^4+...+2^{98}\right)\)chia hết cho 3                            (1)

\(S=2\left[\left(1+2^2\right)+2\left(1+2^2\right)+...+2^{96}\left(1+2^2\right)+2^{97}\left(1+2^2\right)\right]\)

\(\Rightarrow S=2.5\left(1+2+2^2+...+2^{97}\right)\)chia hết cho 5                           (2)

Từ (1) và (2) suy ra S chia hết cho 15 (vì 3.5=15 và ƯCLN(3,5)=1)

4 tháng 1 2016

bai1 A>B

làm bài 1 thui tui bận rùi

 

21 tháng 9 2016

bài 2

22...2^33...3 + 33...3^22...2 

= 22...2^33..32 . 22...2 + 33...3^22..20 . 33...3^3

= (...6) . (...2) + (...1) . (...7)

= (...2) + (...7)

= (...9)

=> chia 5 dư 4