Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ko .vì khi 330 chia nhỏ thành 33 thì chữ số tận cùng của nó là 7.vậy số tận cùng của 330 là số 7 nhưng số chính phương ko có chữ số tận cùng nào bằng 7 nên số tận cùng của Sko phải là số chính phương
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 172008 = (174)502 = (...1)502 = (....1)
112008 = (....1)
32008 = (34)502 = (...1)502 = (...1)
=> 172008 - 112008 - 32008 = (...1) - (...1) - (...1)
Hiệu 172008 - 112008 tận cùng là 0 => 172008 - 112008 - 32008 tận cùng là 9
b) 1725 = (174)6.17 = (...1)6.17 = (...7)
244 = (242)2 = (...6)2 = (...6)
1321 = (134)5.13 = (...1)5.13 = (...3)
=> B = 1725 - 244 - 1321 = (...7) + (...6) - (....3) = (....0) => B chia hết cho 10
c) Tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=1+3^1+3^2+...+3^{30}\)
\(S=1+\left(3^1+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{28}+3^{30}\right)\)
\(S=1+3.10+3^2.10+...+3^{28}.10\)
Có \(3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 0
\(\Rightarrow1+3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 1
=> Chữ số tận cùng của S là 1.
Cho S=\(5+5^2+5^3+...+5^{2008}\)
a)S có chia hết cho 126 không? Vì sao?
b)Tìm chữ sô số tận cùng của S
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\text{Chia hết cho 126}\)
b) \(\text{ Do S là tổng các lũy thừa có cơ số là 5. Cho nên mỗi lũy thừa đều tận cùng là 5. Mà S có tất cả 96 số như vậy. Nên chữ số tận cùng của S là 0. }\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=1+3+3^2+3^3+...+3^{30}\Rightarrow3S=3+3^2+3^3+...+3^{31}\Rightarrow3S-S=3^{31}-1=3^{4.7+3}-1=\left(3^4\right)^7.27-1=\left(...1\right).27-1=\left(...27\right)-1=\left(...26\right)\)=> Chữ số tận cùng của S là 26: 2 = 13
b/
Vì scp ko có t/c là 3 => S ko là scp
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+2+2^2+...+2^{99}\)
\(2A=2+2^2+2^3+2^{100}\)
\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
\(A=2^{100}-1< 2^{100}\)
A=\(17^{2008}-11^{2008}-3^{2008}\)
A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)
A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)
A=\(\left(.........9\right)\)
Vậy A có chữ số tận cùng là 9
2)M=\(17^{25}+24^4-13^{21}\)
M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)
M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)
M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)
M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)
M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)
M=\(\left(...........0\right)⋮10\)
Vậy M\(⋮10\)